日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. C. 查看更多

           

          題目列表(包括答案和解析)


          C.選修4—4:坐標系與參數(shù)方程
          (本小題滿分10分)
          在極坐標系中,圓的方程為,以極點為坐標原點,極軸為軸的正半軸建立平面直角坐標系,直線的參數(shù)方程為為參數(shù)),判斷直線和圓的位置關(guān)系.

          查看答案和解析>>

          C選修4-4:坐標系與參數(shù)方程(本小題滿分10分)
          在平面直角坐標系中,求過橢圓為參數(shù))的右焦點且與直線為參數(shù))平行的直線的普通方程。

          查看答案和解析>>

          C.(選修4—4:坐標系與參數(shù)方程)

          在極坐標系中,圓的方程為,以極點為坐標原點,極軸為軸的正

          半軸建立平面直角坐標系,直線的參數(shù)方程為為參數(shù)),求直線

          得的弦的長度.

           

          查看答案和解析>>

          C(坐標系與參數(shù)方程選做題)已知極坐標的極點在直角坐標系的原點O處,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為為參數(shù)),直線l的極坐標方程為.點P在曲線C上,則點P到直線l的距離的最小值為                

           

          查看答案和解析>>

          C.選修4-4:坐標系與參數(shù)方程

          在直角坐標系中,已知曲線的參數(shù)方程是是參數(shù)),若以為極點,軸的正半軸為極軸,取與直角坐標系中相同的單位長度,建立極坐標系,求曲線的極坐標方程.

           

           

           

          查看答案和解析>>

          一.選擇題:CDDA  DDBA  BBDC .

          二.填空題:(13)60,(14),(15),(16)①②④ .

          三.解答題:

          (17)解:(Ⅰ)∵

          .                 ………3分

          ∴令,        ………4分

          的遞減區(qū)間是,;              ………5分

          ,           ………6分

          的遞增區(qū)間是,.              ………7分

          (Ⅱ)∵,∴,                     ………8分

                又,所以,根據(jù)單位圓內(nèi)的三角函數(shù)線

          可得.                                     ………10分

          (18)解:由題意,                                       ………1分

          ,                                        ………2分

          ,                              ………4分

          ,                            ………6分

          ,                      ………8分

           

           

          文本框:  
2	3	4	5
 
 
 
 
 


所以的分布列為:                                    

           

           

           

          ………9分

          .          ………12分

          (19)解:(Ⅰ)由題設可知,.                    ………1分

          ,

          ,                                 ………3分

          ,              ………5分

          .                                             ………6分

          (Ⅱ)設.                        ………7分

          顯然,時,,                                       ………8分

          , ∴當時,,∴,                       

          時,,∴,                             ………9分

          時,,∴,                        ………10分

          時,恒成立,

          恒成立,                               ………11分

          ∴存在,使得.                                 ………12分

          (20)解:(Ⅰ)∵PA⊥平面ABCD,PC⊥AD,∴AC⊥AD.                 ………1分

          設AB=1,則AC=,CD=2.                                     ………2分

          設F是AC與BD的交點,∵ABCD為梯形,

          ∴△ABF~△CDF, ∴DF:FB=2:1,                               ………3分

          又PE:EB=2:1,∴DF:FB=PE:EB,∴EF∥PD,                   ………5分

          又EF在平面ACE內(nèi),∴PD∥平面ACE.                             ………6分

          (Ⅱ)以A為坐標原點,AB為y軸,AP為z軸建立空間直角坐標系,如圖.

          設AB=1,則,,             ………7分

          ,,,     ………8分

          ,∵,,∴,  …9分

          ,∵,,∴, …10分

          ,      ………11分

          ∴二面角A-EC-P的大小為.………12分

          注:學生使用其它解法應同步給分.

           

           

          (21)解:(Ⅰ)設所求的橢圓E的方程為,                ………1分

          、,將代入橢圓得,     ………2分

          ,又,∴ ,                        ………3分

          , ………4分,       ,              ………5分

          ∴所求的橢圓E的方程為.                                ………6分

          (Ⅱ)設、,則,          ………7分

          又設MN的中點為,則以上兩式相減得:,         ………8分

          ,………9分,     ,                  ………10分

          又點在橢圓內(nèi),∴,                               ………11分

          即,,∴.                         ………12分

          注:學生使用其它解法應同步給分.

          (22)解:(Ⅰ)∵,            ……2分

          ,

          時,遞增,時,遞減,時,遞增,

          所以的極大值點為,極小值點為,                     ……4分

          ,,,              ……5分

          的圖像如右圖,供評卷老師參考)

          所以,的最小值是.                                      ……6分

          (II)由(Ⅰ)知的值域是:

          時,為,當時,為.                ……8分                 

          的值域是為,             ……9分

          所以,當時,令,并解得,

          時,令,無解.

          因此,的取值范圍是.                                     ……12分

          注:學生使用其它解法應同步給分.

           

           


          同步練習冊答案