日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (11)設(shè)數(shù)列()的前項(xiàng)和為.則A.0 查看更多

           

          題目列表(包括答案和解析)

          設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若對(duì)于任意的n∈N*,都有Sn=2an-3n.
          (1)求數(shù)列{an}的首項(xiàng)a1與遞推關(guān)系式:an+1=f(an);
          (2)先閱讀下面定理:“若數(shù)列{an}有遞推關(guān)系an+1=Aan+B,其中A、B為常數(shù),且A≠1,B≠0,則數(shù)列{an-
          B1-A
          }
          是以A為公比的等比數(shù)列.”請(qǐng)你在第(1)題的基礎(chǔ)上應(yīng)用本定理,求數(shù)列{an}的通項(xiàng)公式;
          (3)求數(shù)列{an}的前n項(xiàng)和Sn

          查看答案和解析>>

          設(shè)數(shù)列{an}是一個(gè)無(wú)窮數(shù)列,記Tn=
          n+2i=1
          2i-1ai+2a1-a3-2n+2an+1
          ,n∈N*
          (1)若{an}是等差數(shù)列,證明:對(duì)于任意的n∈N*,Tn=0;
          (2)對(duì)任意的n∈N*,若Tn=0,證明:an是等差數(shù)列;
          (3)若Tn=0,且a1=0,a2=1,數(shù)列bn滿足bn=2an,由bn構(gòu)成一個(gè)新數(shù)列3,b2,b3,…,設(shè)這個(gè)新數(shù)列的前n項(xiàng)和為Sn,若Sn可以寫(xiě)成ab,(a,b∈N,a>1,b>1),則稱Sn為“好和”.問(wèn)S1,S2,S3,…,中是否存在“好和”,若存在,求出所有“好和”;若不存在,說(shuō)明理由.

          查看答案和解析>>

          設(shè)數(shù)列{an}是公差不為0的等差數(shù)列,a1=1且a1,a3,a6成等比數(shù)列,則{an}的前n項(xiàng)和Sn等于( 。

          查看答案和解析>>

          設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且對(duì)任意正整數(shù)n,都有點(diǎn)(an+1,Sn)在直線2x+y-2=0上.若數(shù)列{Sn+λn+
          λ
          2n
          }為等差數(shù)列,則λ的值為( 。

          查看答案和解析>>

          設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,則“an>0”是“數(shù)列{Sn}是遞增數(shù)列”的(  )

          查看答案和解析>>

          一.選擇題:CDDA  DDBA  BBDC .

          二.填空題:(13)60,(14),(15),(16)①②④ .

          三.解答題:

          (17)解:(Ⅰ)∵

          .                 ………3分

          ∴令,        ………4分

          的遞減區(qū)間是,;              ………5分

          ,           ………6分

          的遞增區(qū)間是,.              ………7分

          (Ⅱ)∵,∴,                     ………8分

                又,所以,根據(jù)單位圓內(nèi)的三角函數(shù)線

          可得.                                     ………10分

          (18)解:由題意,                                       ………1分

          ,                                        ………2分

          ,                              ………4分

          ,                            ………6分

          ,                      ………8分

           

           

          文本框:  
2	3	4	5
 
 
 
 
 


所以的分布列為:                                    

           

           

           

          ………9分

          .          ………12分

          (19)解:(Ⅰ)由題設(shè)可知,.                    ………1分

          ,

          ,                                 ………3分

          ,              ………5分

          .                                             ………6分

          (Ⅱ)設(shè).                        ………7分

          顯然,時(shí),,                                       ………8分

          , ∴當(dāng)時(shí),,∴,                       

          當(dāng)時(shí),,∴,                             ………9分

          當(dāng)時(shí),,∴,                        ………10分

          當(dāng)時(shí),恒成立,

          恒成立,                               ………11分

          ∴存在,使得.                                 ………12分

          (20)解:(Ⅰ)∵PA⊥平面ABCD,PC⊥AD,∴AC⊥AD.                 ………1分

          設(shè)AB=1,則AC=,CD=2.                                     ………2分

          設(shè)F是AC與BD的交點(diǎn),∵ABCD為梯形,

          ∴△ABF~△CDF, ∴DF:FB=2:1,                               ………3分

          又PE:EB=2:1,∴DF:FB=PE:EB,∴EF∥PD,                   ………5分

          又EF在平面ACE內(nèi),∴PD∥平面ACE.                             ………6分

          (Ⅱ)以A為坐標(biāo)原點(diǎn),AB為y軸,AP為z軸建立空間直角坐標(biāo)系,如圖.

          設(shè)AB=1,則,,,             ………7分

          ,,,,     ………8分

          設(shè),∵,,∴,  …9分

          設(shè),∵,,∴, …10分

          ,      ………11分

          ∴二面角A-EC-P的大小為.………12分

          注:學(xué)生使用其它解法應(yīng)同步給分.

           

           

          (21)解:(Ⅰ)設(shè)所求的橢圓E的方程為,                ………1分

          、,將代入橢圓得,     ………2分

          ,又,∴ ,                        ………3分

          , ………4分,       ,              ………5分

          ∴所求的橢圓E的方程為.                                ………6分

          (Ⅱ)設(shè)、,則,,          ………7分

          又設(shè)MN的中點(diǎn)為,則以上兩式相減得:,         ………8分

          ,………9分,     ,                  ………10分

          又點(diǎn)在橢圓內(nèi),∴,                               ………11分

          即,,∴.                         ………12分

          注:學(xué)生使用其它解法應(yīng)同步給分.

          (22)解:(Ⅰ)∵,            ……2分

          ,

          時(shí),遞增,時(shí),遞減,時(shí),遞增,

          所以的極大值點(diǎn)為,極小值點(diǎn)為,                     ……4分

          ,,              ……5分

          的圖像如右圖,供評(píng)卷老師參考)

          所以,的最小值是.                                      ……6分

          (II)由(Ⅰ)知的值域是:

          當(dāng)時(shí),為,當(dāng)時(shí),為.                ……8分                 

          的值域是為,             ……9分

          所以,當(dāng)時(shí),令,并解得,

          當(dāng)時(shí),令,無(wú)解.

          因此,的取值范圍是.                                     ……12分

          注:學(xué)生使用其它解法應(yīng)同步給分.

           

           


          同步練習(xí)冊(cè)答案