日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2)令=0.則x=2.令=0.則x= -2. 查看更多

           

          題目列表(包括答案和解析)

          解:因為有負根,所以在y軸左側(cè)有交點,因此

          解:因為函數(shù)沒有零點,所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點,由圖可知c>2


           13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

          若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點

          (2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

          數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個位置上則稱有一個巧合,求巧合數(shù)的分布列。

          查看答案和解析>>

          研究問題:“已知關(guān)于x的不等式ax2-bx+c>0的解集為(1,2),解關(guān)于x的不等式cx2-bx+a>0”,
          有如下解法:
          解:由ax2-bx+c>0,
          ,則,
          所以不等式cx2-bx+a>0的解集為
          參考上述解法,已知關(guān)于x的不等式的解集為(-2,-1)∪(2,3),則關(guān)于x的不等式的解集為(    )。

          查看答案和解析>>

          已知函數(shù)f(x)=alnx-x2+1.

          (1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;

          (2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

          【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

          由已知得a-2=4,2-a=b,所以a=6,b=-4.

          第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

          不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

          ∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1

          即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導數(shù)的知識來解得。

          (1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

          由已知得a-2=4,2-a=b,所以a=6,b=-4.

          (2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

          不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

          ∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

          令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

          ∵g′(x)=-2x+1=(x>0),

          ∴-2x2+x+a≤0在x>0時恒成立,

          ∴1+8a≤0,a≤-,又a<0,

          ∴a的取值范圍是

           

          查看答案和解析>>

          如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,|AB|=3米,|AD|=2米,

          (I)要使矩形AMPN的面積大于32平方米,則AN的長應在什么范圍內(nèi)?

          (II)當AN的長度是多少時,矩形AMPN的面積最?并求出最小面積.

          (Ⅲ)若AN的長度不少于6米,則當AN的長度是多少時,矩形AMPN的面積最?并求出最小面積.

          【解析】本題主要考查函數(shù)的應用,導數(shù)及均值不等式的應用等,考查學生分析問題和解決問題的能力   第一問要利用相似比得到結(jié)論。

          (I)由SAMPN > 32 得 > 32 ,

          ∵x >2,∴,即(3x-8)(x-8)> 0

          ∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+)

          第二問,  

          當且僅當

          (3)令

          ∴當x > 4,y′> 0,即函數(shù)y=在(4,+∞)上單調(diào)遞增,∴函數(shù)y=在[6,+∞]上也單調(diào)遞增.                

          ∴當x=6時y=取得最小值,即SAMPN取得最小值27(平方米).

           

          查看答案和解析>>

          已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

          (1)求f(x)的解析式;

          (2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

          【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

          (2)中設切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

          然后利用g(x)=-2x3+6x2-6函數(shù)求導數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

          解:(1)f′(x)=3ax2+2bx+c

          依題意

          又f′(0)=-3

          ∴c=-3 ∴a=1 ∴f(x)=x3-3x

          (2)設切點為(x0,x03-3x0),

          ∵f′(x)=3x2-3,∴f′(x0)=3x02-3

          ∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

          又切線過點A(2,m)

          ∴m-(x03-3x0)=(3x02-3)(2-x0)

          ∴m=-2x03+6x02-6

          令g(x)=-2x3+6x2-6

          則g′(x)=-6x2+12x=-6x(x-2)

          由g′(x)=0得x=0或x=2

          ∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

          ∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

          畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,

          所以m的取值范圍是(-6,2).

           

          查看答案和解析>>


          同步練習冊答案