日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖.是邊長為2的正方形.是矩形.且二面角是直二面角..是的中點. 查看更多

           

          題目列表(包括答案和解析)

          精英家教網(wǎng)如圖,已知面PBC⊥矩形ABCD所在平面,△PBC是邊長為2的等邊三角形,四邊形ABCD是正方形,且E、F分別為AB、PD的中點;
          (1)求證:EF∥平面PBC;
          (2)點G在PD上移動,求證:EF⊥CG;
          (3)求三棱錐C-BEF的體積.

          查看答案和解析>>

          精英家教網(wǎng)如圖,三棱柱的側(cè)棱長和底面邊長均為2,且側(cè)棱AA1⊥平面A1B1C1,它的正視圖是等邊三角形,俯視圖是由兩個全等的矩形組成的正方形,該三棱柱的側(cè)視圖面積為( 。
          A、4
          B、2
          2
          C、2
          3
          D、
          3

          查看答案和解析>>

          正方形ABCD的邊長是2,E、F分別是AB和CD的中點,將正方形沿EF折成直二面角(如圖所示).M為矩形AEFD內(nèi)一點,如果∠MBE=∠MBC,MB和平面BCF所成角的正切值為,那么點M到直線EF的距離為(    )

          A.                 B.1                C.                D.

          查看答案和解析>>

          正方形ABCD邊長為2,EF分別是ABCD的中點,將正方形沿EF折成直二面角(如圖),M為矩形AEFD內(nèi)一點,如果∠MBE=∠MBCMB和平面BCF所成角的正切值為,那么點M到直線EF的距離為(    )

          A.     B. 1      C.        D.

          查看答案和解析>>

          如圖,ABCD是邊長為的正方形,ABEF是矩形,且二面角CABF是直二面角,,G是EF的中點,

          (1)求GB與平面AGC所成角的正弦值.

          (2)求二面角B—AC—G的余弦值.

           

           

           

          查看答案和解析>>

          一、選擇題(本大題共8小題,每小題5分,共40分)

          1.A     2.D     3.D     4.C     5.C    6.B    7.C    8.A

          二、填空題(本大題共6小題,每小題5分,共30分)

          9.                  10.60                   11.   

          12.(1) (2)               13.1,                  14.,

          注:兩個空的填空題第一個空填對得2分,第二個空填對得3分.

          三、解答題(本大題共6小題,共80分)

          15.(本小題滿分13分)

          解:(Ⅰ)設(shè)等比數(shù)列的公比為,依題意有,    (1)

          ,將(1)代入得.所以.

          于是有                             ………………3分

          解得                             ………………6分

          是遞增的,故.                   ………………7分

          所以.                                         ………………8分

             (Ⅱ),.                     ………………10分

          故由題意可得,解得.又, …………….12分

          所以滿足條件的的最小值為13.                           ………………13分

          16. (本小題滿分13分)

          解:(Ⅰ)由,

             所以.                     …………………4分

             于是. …………7分

            

          (Ⅱ)由正弦定理可得,

               所以.                                …………………….10分

          .         ………………11分

          ,

          解得.即=7 .                                           …………13分

          17.(本小題滿分14分)

          解法一:(Ⅰ)∵正方形,∴

          又二面角是直二面角,

          ⊥平面.

          平面

          .

          ,是矩形,的中點,

          =,=,

          =,

          ⊥平面,

          平面,故平面⊥平面          ……………………5分

           (Ⅱ)如圖,由(Ⅰ)知平面⊥平面,且交于,在平面內(nèi)作,垂足為,則⊥平面.

                  ∴∠與平面所成的角.                ……………………7分

          ∴在Rt△中,=.  

           .  

          與平面所成的角為 .                 ………………………9分

             (Ⅲ)由(Ⅱ),⊥平面.作,垂足為,連結(jié),則,

                  ∴∠為二面角的平面角.             ……………………….11分

          ∵在Rt△中,=,在Rt△中, .

          ∴在Rt△中,     ………13分

          即二面角的大小為arcsin.          ………………………………14分

           

          解法二:

          如圖,以為原點建立直角坐標(biāo)系

          (0,0,0),(0,2,0),

          (0,2,2),,0),

          ,0,0).

             (Ⅰ) =(,,0),=(,0),

                   =(0,0,2),

          ?=(,,0)?(,,0)=0,

           ? =(,,0)?(0,0,2)= 0.

          ,

          ⊥平面,又平面,故平面⊥平面. ……5分

             (Ⅱ)設(shè)與平面所成角為.

                  由題意可得=(,,0),=(0,2,2 ),=(,,0).

                  設(shè)平面的一個法向量為=(,,1),

                  由.

                    .

          與平面所成角的大小為.            ……………..9分

             (Ⅲ)因=(1,-1,1)是平面的一個法向量,

                  又⊥平面,平面的一個法向量=(,0,0),

                  ∴設(shè)的夾角為,得,

                  ∴二面角的大小為.      ………………………………14分

          18. (本小題滿分13分)

          解:(Ⅰ)設(shè)事件表示甲運動員射擊一次,恰好擊中9環(huán)以上(含9環(huán)),則

          .                            ……………….3分

          甲運動員射擊3次均未擊中9環(huán)以上的概率為

          .                            …………………5分

          所以甲運動員射擊3次,至少有1次擊中9環(huán)以上的概率為

          .                               ………………6分

              (Ⅱ)記乙運動員射擊1次,擊中9環(huán)以上為事件,則

                                  …………………8分

          由已知的可能取值是0,1,2.                       …………………9分

          ;

          ;

          .

          的分布列為

          0

          1

          2

          0.05

          0.35

          0.6

                                                         ………………………12分

          所以

          故所求數(shù)學(xué)期望為.                          ………………………13分

          19. (本小題滿分14分)

          解:(Ⅰ)由已知 ,故,所以直線的方程為.

                將圓心代入方程易知過圓心 .      …………………………3分

                  (Ⅱ) 當(dāng)直線軸垂直時,易知符合題意;        ………………4分

          當(dāng)直線與軸不垂直時,設(shè)直線的方程為,由于,

          所以,解得.

          故直線的方程為.        ………………8分

                  (Ⅲ)當(dāng)軸垂直時,易得,,又

          ,故. 即.                   ………………10分

          當(dāng)的斜率存在時,設(shè)直線的方程為,代入圓的方程得

          .則

          ,即,

          .又由,

          .

          .

          綜上,的值為定值,且.                …………14分

          另解一:連結(jié),延長交于點,由(Ⅰ)知.又,

          故△∽△.于是有.


          同步練習(xí)冊答案