日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 又由余弦定理得 查看更多

           

          題目列表(包括答案和解析)

          已知,分別為三個(gè)內(nèi)角,,的對(duì)邊,.

          (Ⅰ)求

          (Ⅱ)若=2,的面積為,求.

          【命題意圖】本題主要考查正余弦定理應(yīng)用,是簡單題.

          【解析】(Ⅰ)由及正弦定理得

             

          由于,所以

          ,故.

          (Ⅱ) 的面積==,故=4,

           故=8,解得=2

           

          查看答案和解析>>

          中,,分別是角所對(duì)邊的長,,且

          (1)求的面積;

          (2)若,求角C.

          【解析】第一問中,由又∵的面積為

          第二問中,∵a =7  ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:         

          又C為內(nèi)角      ∴

          解:(1) ………………2分

             又∵                   ……………………4分

               ∴的面積為           ……………………6分

          (2)∵a =7  ∴c=5                                  ……………………7分

           由余弦定理得:      

              ∴                                     ……………………9分

          又由余弦定理得:         

          又C為內(nèi)角      ∴                           ……………………12分

          另解:由正弦定理得:  ∴ 又  ∴

           

          查看答案和解析>>

          中,是三角形的三內(nèi)角,是三內(nèi)角對(duì)應(yīng)的三邊,已知成等差數(shù)列,成等比數(shù)列

          (Ⅰ)求角的大;

          (Ⅱ)若,求的值.

          【解析】第一問中利用依題意,故

          第二問中,由題意又由余弦定理知

          ,得到,所以,從而得到結(jié)論。

          (1)依題意,故……………………6分

          (2)由題意又由余弦定理知

          …………………………9分

             故

                     代入

           

          查看答案和解析>>

          在四棱錐中,平面,底面為矩形,.

          (Ⅰ)當(dāng)時(shí),求證:;

          (Ⅱ)若邊上有且只有一個(gè)點(diǎn),使得,求此時(shí)二面角的余弦值.

          【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,

          又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分

          ,得證。

          第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

          設(shè)BQ=m,則Q(1,m,0)(0《m《a》

          要使,只要

          所以,即………6分

          由此可知時(shí),存在點(diǎn)Q使得

          當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得

          由此知道a=2,  設(shè)平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

          解:(Ⅰ)當(dāng)時(shí),底面ABCD為正方形,

          又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………3分

          (Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

          則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

          設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

          所以,即………6分

          由此可知時(shí),存在點(diǎn)Q使得

          當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得由此知道a=2,

          設(shè)平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

           

          查看答案和解析>>

          在△ABC中,內(nèi)角A、B、C所對(duì)邊的邊長分別是a、b、c,已知c=2,C=.

          (Ⅰ)若△ABC的面積等于,求a、b;

          (Ⅱ)若,求△ABC的面積.

          【解析】第一問中利用余弦定理及已知條件得又因?yàn)椤鰽BC的面積等于,所以,得聯(lián)立方程,解方程組得.

          第二問中。由于即為即.

          當(dāng)時(shí), , ,   所以當(dāng)時(shí),得,由正弦定理得,聯(lián)立方程組,解得,得到

          解:(Ⅰ) (Ⅰ)由余弦定理及已知條件得,………1分

          又因?yàn)椤鰽BC的面積等于,所以,得,………1分

          聯(lián)立方程,解方程組得.                 ……………2分

          (Ⅱ)由題意得

          .             …………2分

          當(dāng)時(shí), , ,           ……1分

          所以        ………………1分

          當(dāng)時(shí),得,由正弦定理得,聯(lián)立方程組

          ,解得,;   所以

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案