日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)求角A, 查看更多

           

          題目列表(包括答案和解析)

          A、B是拋物線C:y2=2px(p>0)上的兩個動點,F(xiàn)是焦點,直線AB不垂直于x軸且交x軸于點D.
          (1)若D與F重合,且直線AB的傾斜角為
          π
          4
          ,求證:
          OA
          OB
          p2
          是常數(shù)(O是坐標原點);
          (2)若|AF|+|BF|=8,線段AB的垂直平分線恒過定點Q(6,0),求拋物線C的方程.

          查看答案和解析>>

          設角A,B,C是△ABC的三個內(nèi)角,已知向量
          m
          =(sinA+sinC,sinB-sinA)
          ,
          n
          =(sinA-sinC,sinB)
          ,且
          m
          n

          (Ⅰ)求角C的大。
          (Ⅱ)若向量
          s
          =(0,-1),
          t
          =(cosA,2cos2
          B
          2
          )
          ,試求|
          s
          +
          t
          |
          的取值范圍.

          查看答案和解析>>

          11、A是△BCD平面外的一點,E、F分別是BC、AD的中點,
          (1)求證:直線EF與BD是異面直線;
          (2)若AC⊥BD,AC=BD,求EF與BD所成的角.

          查看答案和解析>>

          精英家教網(wǎng)A(選修4-1:幾何證明選講)
          如圖,AB是⊙O的直徑,C,F(xiàn)是⊙O上的兩點,OC⊥AB,過點F作⊙O的切線FD交AB的延長線于點D,連接CF交AB于點E.
          求證:DE2=DB•DA.
          B(選修4-2:矩陣與變換)
          求矩陣
          21
          12
          的特征值及對應的特征向量.
          C(選修4-4:坐標系與參數(shù)方程)
          已知曲線C的極坐標方程是ρ=2sinθ,直線l的參數(shù)方程是
          x=-
          3
          5
          t+2
          y=
          4
          5
          t
          (t為參數(shù)).
          (Ⅰ)將曲線C的極坐標方程化為直角坐標方程;
          (Ⅱ)設直線l與x軸的交點是M,N是曲線C上一動點,求MN的最大值.
          D(選修4-5:不等式選講)
          已知m>0,a,b∈R,求證:(
          a+mb
          1+m
          )2
          a2+mb2
          1+m

          查看答案和解析>>

          精英家教網(wǎng)A.如圖,四邊形ABCD內(nèi)接于⊙O,弧AB=弧AD,過A點的切線交CB的延長線于E點.
          求證:AB2=BE•CD.
          B.已知矩陣M
          2-3
          1-1
          所對應的線性變換把點A(x,y)變成點A′(13,5),試求M的逆矩陣及點A的坐標.
          C.已知圓的極坐標方程為:ρ2-4
          2
          ρcos(θ-
          π
          4
          )+6=0

          (1)將圓的極坐標方程化為直角坐標方程;
          (2)若點P(x,y)在該圓上,求x+y的最大值和最小值.
          D.解不等式|2x-1|<|x|+1.

          查看答案和解析>>

           

          1-15CBDAC CDB   0   5   100  [3.9]   垂直  2或8  

          16.⑴ ∵ ,……………………………… 2分

          又∵ ,∴ 為斜三角形,

          ,∴.   ……………………………………………………………… 4分

          ,∴ .  …………………………………………………… 6分

          ⑵∵,∴ …10分

          ,∵,∴.…………………………………12分

           

          17.(Ⅰ)從4名運動員中任取兩名,其靶位號與參賽號相同,有種方法,另2名運動員靶位號與參賽號均不相同的方法有1種,所以恰有一名運動員所抽靶位號與參賽號相同的概率為  ……………………………4

             (Ⅱ)①由表可知,兩人各射擊一次,都未擊中9環(huán)的概率為P=(1-0.3)(1-0.32)=0.476至少有一人命中9環(huán)的概率為p=1-0.476=0.524………………………8分

             

          所以2號射箭運動員的射箭水平高…………………………………12分

           

          18.證明:(Ⅰ)在梯形ABCD中,∵

          ∴四邊形ABCD是等腰梯形,

          ,∴

          又∵平面平面ABCD,交線為AC,∴平面ACFE…………………6分

          (Ⅱ)取EF中點G,EB中點H,連結DG、GH、DH,∵DE=DF,∴平面ACFE,∴  又∵,∴又∵,∴

          是二面角B―EF―D的平面角.

          在△BDE中

          ,∴在△DGH中,

          由余弦定理得即二面角B―EF―D的大小余弦值...14分

           

           

          19.解:(1)由橢圓定義可得,可得

            

          ,,解得   (4分)

          (或解:以為直徑的圓必與橢圓有交點,即

             (2)由,得

          解得    

              此時

          當且僅當m=2時, (9分)

          (3)由

          設A,B兩點的坐標分別為,中點Q的坐標為

          ,兩式相減得

               ①

          且在橢圓內(nèi)的部分

          又由可知

              ②

          ①②兩式聯(lián)立可求得點Q的坐標為

          點Q必在橢圓內(nèi)

           又             (14分)

           

          20.解:(1)

          ……………………………4分

          (2)

          由此猜測

          下面證明:當時,由

          時,

          時,

          總之在(-                (10分)

          所以當時,在(-1,0)上有唯一實數(shù)解,從而

          上有唯一實數(shù)解。

          綜上可知,.                 (14分)

           

          21.解:(1)令

             令

             由①②得           (6分)

            (2)由(1)可得

          n     

             

                ………………14

           

           


          同步練習冊答案