日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 邊形:分割成 . . 個小三角形.試推導(dǎo)邊形的內(nèi)角和, 查看更多

           

          題目列表(包括答案和解析)

          閱讀材料:多邊形的頂點、邊上或內(nèi)部的一點與多邊形各頂點的連線,能夠?qū)⒍噙呅畏指畛扇舾蓚小三角形。如圖給出了四邊形的具體分割方法,分別將四邊形分割成2個、3個、4個小三角形,可以得到四邊形的內(nèi)角和為360°。

          (1)請你按照上述方法將圖中的五邊形進(jìn)行分割,并寫出得到的小三角形的個數(shù);

          分別分割成            、           、           個小三角形;

          (2)試把這一結(jié)論推廣至邊形,分別寫出按照上述三種分割方法得到的小三角形的個數(shù)(按規(guī)律寫出結(jié)論即可,可以不畫圖),并根據(jù)其中的一種分割方法推導(dǎo)出邊形的內(nèi)角和(畫出示意圖)。

          邊形:分割成           、                      個小三角形。試推導(dǎo)邊形的內(nèi)角和。

          查看答案和解析>>

          問題提出
          我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
          問題解決
          如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大小.

          解:由圖可知:M=a2+b2,N=2ab.
          ∴M-N=a2+b2-2ab=(a-b)2
          ∵a≠b,∴(a-b)2>0.
          ∴M-N>0.
          ∴M>N.
          類比應(yīng)用
          【小題1】已知:多項式M =2a2-a+1 ,N =a2-2a.試比較M與N的大。
          【小題2】已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊
          滿足a <b < c ,現(xiàn)將△ABC 補成長方形,使得△ABC的兩個頂
          點為長方形的兩個端點,第三個頂點落在長方形的這一邊的對邊上。                     
          ①這樣的長方形可以畫       個;
          ②所畫的長方形中哪個周長最小?為什么?

          拓展延伸                                                                                               
          已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

          查看答案和解析>>

          問題提出
          我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
          問題解決
          如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大。

          解:由圖可知:M=a2+b2,N=2ab.
          ∴M-N=a2+b2-2ab=(a-b)2
          ∵a≠b,∴(a-b)2>0.
          ∴M-N>0.
          ∴M>N.
          類比應(yīng)用
          【小題1】已知:多項式M =2a2-a+1 ,N =a2-2a.試比較M與N的大。
          【小題2】已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊
          滿足a <b < c ,現(xiàn)將△ABC 補成長方形,使得△ABC的兩個頂
          點為長方形的兩個端點,第三個頂點落在長方形的這一邊的對邊上。                     
          ①這樣的長方形可以畫       個;
          ②所畫的長方形中哪個周長最小?為什么?

          拓展延伸                                                                                               
          已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

          查看答案和解析>>


          【問題提出】我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
          【問題解決】如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大小.

          解:由圖可知:,

          ∵a≠b,∴>0.
          ∴M-N>0.∴M>N.
          【類比應(yīng)用】(1)已知:多項式M =2a2-a+1 ,N =a2-2a .
          試比較M與N的大。
          (2)已知:如圖2,銳角△ABC (其中BC為a ,AC為 b,
          AB為c)三邊滿足a <b < c ,現(xiàn)將△ABC 補成長方形,
          使得△ABC的兩個頂點為長方形的兩個端點,第三個頂點落
          在長方形的這一邊的對邊上。
           
          ①這樣的長方形可以畫     個;
          ②所畫的長方形中哪個周長最?為什么?
          【拓展延伸】 已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

          查看答案和解析>>

          【問題提出】我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.

          【問題解決】如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大。

          解:由圖可知:

          ∵a≠b,∴>0.

          ∴M-N>0.∴M>N.

          【類比應(yīng)用】(1)已知:多項式M =2a2-a+1 ,N =a2-2a .

          試比較M與N的大小.

          (2)已知:如圖2,銳角△ABC (其中BC為a ,AC為 b,

          AB為c)三邊滿足a <b < c ,現(xiàn)將△ABC 補成長方形,

          使得△ABC的兩個頂點為長方形的兩個端點,第三個頂點落

          在長方形的這一邊的對邊上。

           

          ①這樣的長方形可以畫     個;

          ②所畫的長方形中哪個周長最?為什么?

          【拓展延伸】 已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

           

          查看答案和解析>>


          同步練習(xí)冊答案