日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 3.已知.在△ABC中.∠A=∠B=∠C.則三條邊長比為. 查看更多

           

          題目列表(包括答案和解析)

          已知,在△ABC中,∠A=∠B=∠C,則三條邊長比為(    ).

              A.1:1:                                            B.1::2

              C.1:                                       D.1:4:l

          查看答案和解析>>

          【閱讀理解】
          已知:如圖1,等腰直角三角形ABC中,∠B=90°,AD是角平分線,交BC邊于點D.求證:AC=AB+BD證明:如圖1,在AC上截取AE=AB,連接DE,則由已知條件易知:Rt△ADB≌Rt△ADE(AAS)
          ∴∠AED=∠B=90°,DE=DB
          又∵∠C=45°,∴△DEC是等腰直角三角形.
          ∴DE=EC.
          ∴AC=AE+EC=AB+BD.
          【解決問題】
          已知,如圖2,等腰直角三角形ABC中,∠B=90°,AD是∠BAC的平分線,交BC邊于點D,DE⊥AC,垂足為E,若AB=2,則三角形DEC的周長為________.
          【數(shù)學(xué)思考】:現(xiàn)將原題中的“AD是內(nèi)角平分線,交BC邊于點D”換成“AD是外角平分線,交BC邊的延長線于點D如圖3”,其他條件不變,請你猜想線段AC、AB、BD之間的數(shù)量關(guān)系,并證明你的猜想.
          【類比猜想】
          任意三角形ABC,∠ABC=2∠C,AD是∠BAC的外角平分線,交CB邊的延長線于點D,如圖4,請你寫出線段AC、AB、BD之間的數(shù)量關(guān)系.
          作業(yè)寶

          查看答案和解析>>


          【問題提出】我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
          【問題解決】如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大。

          解:由圖可知:,

          ∵a≠b,∴>0.
          ∴M-N>0.∴M>N.
          【類比應(yīng)用】(1)已知:多項式M =2a2-a+1 ,N =a2-2a .
          試比較M與N的大。
          (2)已知:如圖2,銳角△ABC (其中BC為a ,AC為 b,
          AB為c)三邊滿足a <b < c ,現(xiàn)將△ABC 補成長方形,
          使得△ABC的兩個頂點為長方形的兩個端點,第三個頂點落
          在長方形的這一邊的對邊上。
           
          ①這樣的長方形可以畫     個;
          ②所畫的長方形中哪個周長最。繛槭裁?
          【拓展延伸】 已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

          查看答案和解析>>

          【問題提出】我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.

          【問題解決】如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大。

          解:由圖可知:,

          ∵a≠b,∴>0.

          ∴M-N>0.∴M>N.

          【類比應(yīng)用】(1)已知:多項式M =2a2-a+1 ,N =a2-2a .

          試比較M與N的大。

          (2)已知:如圖2,銳角△ABC (其中BC為a ,AC為 b,

          AB為c)三邊滿足a <b < c ,現(xiàn)將△ABC 補成長方形,

          使得△ABC的兩個頂點為長方形的兩個端點,第三個頂點落

          在長方形的這一邊的對邊上。

           

          ①這樣的長方形可以畫     個;

          ②所畫的長方形中哪個周長最?為什么?

          【拓展延伸】 已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

           

          查看答案和解析>>


          【問題提出】我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
          【問題解決】如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大小.

          解:由圖可知:,

          ∵a≠b,∴>0.
          ∴M-N>0.∴M>N.
          【類比應(yīng)用】(1)已知:多項式M =2a2-a+1 ,N =a2-2a .
          試比較M與N的大。
          (2)已知:如圖2,銳角△ABC (其中BC為a ,AC為 b,
          AB為c)三邊滿足a <b < c ,現(xiàn)將△ABC 補成長方形,
          使得△ABC的兩個頂點為長方形的兩個端點,第三個頂點落
          在長方形的這一邊的對邊上。
           
          ①這樣的長方形可以畫     個;
          ②所畫的長方形中哪個周長最?為什么?
          【拓展延伸】 已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

          查看答案和解析>>


          同步練習(xí)冊答案