日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知等邊△ABC內(nèi)任意一點P到各邊的距離分別為...等邊△ABC的高為.試證明:++=. 查看更多

           

          題目列表(包括答案和解析)

          閱讀材料:
          如圖,△ABC中,AB=AC,P為底邊BC上任意一點,點P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ABP+S△ACP=S△ABC,即:
          1
          2
          AB•r1+
          1
          2
          AC•r2=
          1
          2
          AB•h
          ,∴r1+r2=h(定值).
          (1)類比與推理
          如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點”放寬為“在三角形內(nèi)任一點”,即:已知等邊△ABC內(nèi)任意一點P到各邊的距離分別為r1,r2,r3,等邊△ABC的高為h,試證明r1+r2+r3=h(定值).
          (2)理解與應用
          △ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC內(nèi)部是否存在一點O,點O到各邊的距離相等?
           
          (填“存在”或“不存在”),若存在,請直接寫出這個距離r的值,r=
           
          .若不存在,請說明理由.精英家教網(wǎng)

          查看答案和解析>>

          閱讀材料:
          如圖,△ABC中,AB=AC,P為底邊BC上任意一點,點P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ARP+S△ACP=S△ABC,即:
          1
          2
          AB•r1+
          1
          2
          AC•r2=
          1
          2
          AC•h,∴r1+r2=h(定值).
          (1)理解與應用:
          如圖,在邊長為3的正方形ABCD中,點E為對角線BD上的一點,且BE=BC,F(xiàn)為CE上一點,F(xiàn)M⊥BC于M,F(xiàn)N⊥BD于N,試利用上述結(jié)論求出FM+FN的長.
          (2)類比與推理:
          如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點”放寬為“在三角形內(nèi)任一點”,即:
          已知等邊△ABC內(nèi)任意一點P到各邊的距離分別為r1,r2,r3,等邊△ABC的高為h,試證明r1+r2+r3=h(定值).
          (3)拓展與延伸:
          若正n邊形A1A2…An,內(nèi)部任意一點P到各邊的距離為r1r2…rn,請問r1+r2+…+rn是否為定值?如果是,請合理猜測出這個定值.
          精英家教網(wǎng)精英家教網(wǎng)

          查看答案和解析>>

          閱讀材料:如圖,△ABC中,AB=AC,P為底邊BC上任意一點,點P到兩 腰的距離分別為,腰上的高為h,連結(jié)AP,則,即: ,(1)理解與應用
          如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點”放寬為“在   三角形內(nèi)任一點”,即:已知邊長為2的等邊△ABC內(nèi)任意一點P到各邊的距離分別為,,,試證明:.

          (2)類比與推理
          邊長為2的正方形內(nèi)任意一點到各邊的距離的和等于        ;
          (3)拓展與延伸
          若邊長為2的正n邊形A1A2…An內(nèi)部任意一點P到各邊的距離為,請問是否為定值(用含n的式子表示),如果是,請合理猜測出這個定值。

          查看答案和解析>>

          閱讀材料:如圖,△ABC中,AB=AC,P為底邊BC上任意一點,點P到兩  腰的距離分別為,腰上的高為h,連結(jié)AP,則,即: ,(1)理解與應用

          如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點”放寬為“在    三角形內(nèi)任一點”,即:已知邊長為2的等邊△ABC內(nèi)任意一點P到各邊的距離分別為,,,試證明:.

          (2)類比與推理

          邊長為2的正方形內(nèi)任意一點到各邊的距離的和等于         ;

          (3)拓展與延伸

          若邊長為2的正n邊形A1A2…An內(nèi)部任意一點P到各邊的距離為,請問是否為定值(用含n的式子表示),如果是,請合理猜測出這個定值。

                        

           

          查看答案和解析>>

          閱讀材料:
          如圖,△ABC中,AB=AC,P為底邊BC上任意一點,點P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ABP+S△ACP=S△ABC,即:數(shù)學公式,∴r1+r2=h(定值).
          (1)類比與推理
          如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點”放寬為“在三角形內(nèi)任一點”,即:已知等邊△ABC內(nèi)任意一點P到各邊的距離分別為r1,r2,r3,等邊△ABC的高為h,試證明r1+r2+r3=h(定值).
          (2)理解與應用
          △ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC內(nèi)部是否存在一點O,點O到各邊的距離相等?________(填“存在”或“不存在”),若存在,請直接寫出這個距離r的值,r=________.若不存在,請說明理由.

          查看答案和解析>>


          同步練習冊答案