日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 1.= 查看更多

           

          題目列表(包括答案和解析)

          (Ⅰ)已知函數(shù)f(x)=
          x
          x+1
          .?dāng)?shù)列{an}滿足:an>0,a1=1,且
          an+1
          =f(
          an
          )
          ,記數(shù)列{bn}的前n項和為Sn,且Sn=
          2
          2
          [
          1
          an
          +(
          2
          +1)n]
          .求數(shù)列{bn}的通項公式;并判斷b4+b6是否仍為數(shù)列{bn}中的項?若是,請證明;否則,說明理由.
          (Ⅱ)設(shè){cn}為首項是c1,公差d≠0的等差數(shù)列,求證:“數(shù)列{cn}中任意不同兩項之和仍為數(shù)列{cn}中的項”的充要條件是“存在整數(shù)m≥-1,使c1=md”.

          查看答案和解析>>

          (Ⅰ)在如圖的坐標(biāo)系中作出同時滿足約束條件:x+y-1≥0;x-y+1≥0;4x+y-2≥0的可行性區(qū)域;
          (Ⅱ)若實數(shù)x,y滿足(Ⅰ)中約束條件,求目標(biāo)函數(shù)
          x+yx
          的取值范圍.精英家教網(wǎng)

          查看答案和解析>>

          (Ⅰ)①證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;②由Cα+β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
          (Ⅱ)已知△ABC的面積S=
          1
          2
          ,
          AB
          AC
          =3
          ,且cosB=
          3
          5
          ,求cosC.

          查看答案和解析>>

          (Ⅰ)①證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;
          ②由Cα+β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
          (Ⅱ)已知cosα=-
          4
          5
          ,α∈(π,
          3
          2
          π),tanβ=-
          1
          3
          ,β∈(
          π
          2
          ,π),cos(α+β)
          ,求cos(α+β).

          查看答案和解析>>

          20、(Ⅰ)求y=4x-2x+1的值域;
          (Ⅱ)關(guān)于x的方程4x-2x+1+a=0有解,求實數(shù)a的取值范圍.

          查看答案和解析>>

            1. 19.解:(1)連接B1D1,ABCD―A1B1C1D1為四棱柱,

              ,

              則在四邊形BB1D1D中(如圖),

              得△D1O1B1≌△B1BO,可得∠D1O1B1=∠OBB1=90°,

              即D1O1⊥B1O

                 (2)解法一:連接OD1,△AB1C,△AD1C均為等腰

              三角形,

              且AB1=CB,AD1=CD1,所有OD1⊥AC,B1O⊥AC,

              顯然:∠D1OB1為所求二面角D1―AC―B1的平面角,

              由:OD1=OB1=B1D=2知

              解法二:由ABCD―A1B1C1D1為四棱柱,得面BB1D1D⊥面ABCD

              所以O(shè)1D1在平面ABCD上的射影為BD,由四邊形ABCD為正方形,AC⊥BD,由三垂線定理知,O1D1⊥AC?傻肈1O1⊥平面AB1C。

              又因為B1O⊥AC,所以∠D1OB1所求二面角D1―AC―B1的平面角,

              20.解:(1)曲線C上任意一點M到點F(0,1)的距離比它到直線的距離小1,

              可得|MF|等于M到y(tǒng)=-1的距離,由拋物線的定義知,M點的軌跡為

                 (2)當(dāng)直線的斜率不存在時,它與曲線C只有一個交點,不合題意,

                  當(dāng)直線m與x軸不垂直時,設(shè)直線m的方程為

                 代入    ①

                  恒成立,

                  設(shè)交點A,B的坐標(biāo)分別為

              ∴直線m與曲線C恒有兩個不同交點。

                  ②        ③

              故直線m的方程為

              21.解:(1)由已知得

                 

                 (2)

                 

                 

                 (3)

                 

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>