日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知二次函數(shù)y=mx2+(m-3)x-3(m>0)的圖象如圖所示.
          (1)這條拋物線與x軸交于兩點A(x1,0)、B(x2,0)(x1<x2),與y軸交于點C,且AB=4,⊙M過A、B、C三點,求扇形MAC的面積;
          (2)在(1)的條件下,拋物線上是否存在點P,使△PBD(PD垂直于x軸,垂足為D)被直線BC分成面積比為1:2的兩部分?若存在,請求出P點坐標;若不存在,請說明理由.
          (1)∵y=mx2+(m-3)x-3=(mx-3)(x+1),
          ∴x1=-1,x2=
          3
          m
          ,
          ∴AB=
          3
          m
          -(-1)=4,
          即m=1;
          ∴y=x2-2x-3,
          得A(-1,0)、B(3,0)、C(0,-3),
          ∴∠OBC=45°,∠AMC=90°,
          ∵AC=
          12+32
          =
          10
          ,
          ∵AM=CM,
          ∴AM=
          AC
          2
          =
          5
          ,
          ∴R=
          5
          ,S=
          5
          4
          π.

          (2)設(shè)PD與BC的交點為E,可求直線BC解析式為y=x-3,
          設(shè)P(x,x2-2x-3);當(dāng)S△BED:S△BEP=1:2時,PD=3DE,
          得-(x2-2x-3)=-3(x-3),解得x=2或3,
          x=2
          y=-3
          x=3
          y=0
          (舍去),
          ∴P(2,-3);
          當(dāng)S△PBE:S△BED=1:2時,同理可得P(
          1
          2
          ,-
          15
          4
          ),
          故存在P(2,-3)或P(
          1
          2
          ,-
          15
          4
          ).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,在同一坐標系內(nèi),二次函數(shù)的圖象與兩坐標軸分別交于點A(-1,0),點B(2,0)和點C(0,4),一次函數(shù)的圖象與拋物線交于B,C兩點.
          (1)二次函數(shù)的解析式為______;
          (2)當(dāng)自變量x______時,兩函數(shù)的函數(shù)值都隨x增大而減小;
          (3)當(dāng)自變量x______時,一次函數(shù)值大于二次函數(shù)值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在平面直角坐標系中,將直線y=kx沿y軸向下平移3個單位長度后恰好經(jīng)過B(-3,0)及y軸上的C點.若拋物線y=-x2+bx+c與x軸交于A、B兩點(點A在點B的右側(cè)),且經(jīng)過點C,其對稱軸與直線BC交于點E,與x軸交于點F.
          (1)求直線BC及拋物線的解析式;
          (2)設(shè)拋物線的頂點為D,點P在拋物線的對稱軸上,若∠APD=∠ACB,求點P的坐標;
          (3)在拋物線上是否存在點M,使得直線CM把四邊形EFOC分成面積相等的兩部分?若存在,請求出直線CM的解析式;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          拋物線y=a(x+2)2+c與x軸交于A、B兩點,與y軸負半軸交于點C,已知點A(-1,0),OB=OC.
          (1)求此拋物線的解析式;
          (2)若點M是拋物線上一個動點,且S△BCM=S△ABC,求點M的坐標;
          (3)Q為直線y=-x-4上一點,在此拋物線的對稱軸是否存在一點P,使得∠APB=2∠AQB,且這樣的Q點有且只有一個?若存在,請求出點P的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          兒童商場購進一批M型服裝,銷售時標價為75元/件,按8折銷售仍可獲利50%.商場現(xiàn)決定對M型服裝開展促銷活動,每件在8折的基礎(chǔ)上再降價x元銷售,已知每天銷售數(shù)量y(件)與降價x(元)之間的函數(shù)關(guān)系式為y=20+4x(x>0).
          (1)求M型服裝的進價;
          (2)求促銷期間每天銷售M型服裝所獲得的利潤W的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示,拋物線與x軸交于點A(-1,0)、B(3,0)兩點,與y軸交于點C(0,-3).以AB為直徑作⊙M,過拋物線上一點P作⊙M的切線PD,切點為D,并與⊙M的切線AE相交于點E,連接DM并延長交⊙M于點N,連接AN、AD.
          (1)求拋物線所對應(yīng)的函數(shù)關(guān)系式及拋物線的頂點坐標;
          (2)若四邊形EAMD的面積為4
          3
          ,求直線PD的函數(shù)關(guān)系式;
          (3)拋物線上是否存在點P,使得四邊形EAMD的面積等于△DAN的面積?若存在,求出點P的坐標;若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在△ABC中,AB=17,AC=5
          2
          ,∠CAB=45°,點O在BA上移動,以O(shè)為圓心作⊙O,使⊙O與邊BC相切,切點為D,設(shè)⊙O的半徑為x,四邊形AODC的面積為y.
          (1)求y與x的函數(shù)關(guān)系式;
          (2)求x的取值范圍;
          (3)當(dāng)x為何值時,⊙O與BC、AC都相切?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在△ABC中,AB=AC=1,∠A=45°,邊長為1的正方形的一個頂點D在邊AC上,與△ABC另兩邊分別交于點E、F,DEAB,將正方形平移,使點D保持在AC上(D不與A重合),設(shè)AF=x,正方形與△ABC重疊部分的面積為y.
          (1)求y與x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;
          (2)x為何值時y的值最大?
          (3)x在哪個范圍取值時y的值隨x的增大而減小?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,拋物線l1:y1=a(x+1)2+2與l2:y2=-(x-2)2-1交于點B(1,-2),且分別與y軸交于點D、E.過點B作x軸的平行線,交拋物線于點A、C,則以下結(jié)論:
          ①無論x取何值,y2總是負數(shù);
          ②l2可由l1向右平移3個單位,再向下平移3個單位得到;
          ③當(dāng)-3<x<1時,隨著x的增大,y1-y2的值先增大后減;
          ④四邊形AECD為正方形.
          其中正確的是( 。
          A.1個B.2個C.3個D.4個

          查看答案和解析>>

          同步練習(xí)冊答案