日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在△ABC中,AB=17,AC=5
          2
          ,∠CAB=45°,點(diǎn)O在BA上移動(dòng),以O(shè)為圓心作⊙O,使⊙O與邊BC相切,切點(diǎn)為D,設(shè)⊙O的半徑為x,四邊形AODC的面積為y.
          (1)求y與x的函數(shù)關(guān)系式;
          (2)求x的取值范圍;
          (3)當(dāng)x為何值時(shí),⊙O與BC、AC都相切?
          (1)如圖①,過點(diǎn)C作CE⊥AB,垂足為E.
          在Rt△ACE中,AC=5
          2
          ,∠CAB=45°,
          ∴AE=CE=AC•sin45°=5
          2
          ×
          2
          2
          =5

          ∴BE=AB-AE=17-5=12,CB=
          CE2+EB2
          =
          52+122
          =13
          .(2分)
          ∴tanB=
          CE
          EB
          =
          5
          12

          ∵CB切⊙O于點(diǎn)D,
          ∴OD⊥BC.
          OD
          BD
          =
          x
          BD
          =tanB=
          5
          12
          ,
          ∴BD=
          12
          5
          x
          .(4分)
          ∵S四邊形AODC=S△ABC-S△BOD,
          y=
          1
          2
          AB•CE
          -
          1
          2
          BD•OD
          =
          1
          2
          ×17×5-
          1
          2
          12
          5
          x•x
          =-
          6
          5
          x2+
          85
          2
          ;(6分)

          (2)過點(diǎn)C作CF⊥CB交AB于F.
          在Rt△BCF中,CF=BC•tanB=13×
          5
          12
          =
          65
          12

          ∴x的取值范圍是0<x≤
          65
          12
          .(9分)
          說明:答案為0<x<
          65
          12
          不扣分;

          (3)當(dāng)⊙O與BC、AC都相切時(shí),
          設(shè)⊙O與AC的切點(diǎn)為G,連接OG、OC(如圖②),則OG=OD=x.
          ∵S△AOC+S△BOC=S△ABC,
          1
          2
          •5
          2
          •x+
          1
          2
          •13•x=
          1
          2
          •17•5

          x=
          85
          5
          2
          +13
          =
          5
          7
          (13-5
          2
          )
          .(12分)
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知如圖,拋物線y=ax2+bx+c與x軸相交于B(1,0)、C(4,0)兩點(diǎn),與y軸的正半軸相交于A點(diǎn),過A、B、C三點(diǎn)的⊙P與y軸相切于點(diǎn)A.
          (1)請求出點(diǎn)A坐標(biāo)和⊙P的半徑;
          (2)請確定拋物線的解析式;
          (3)M為y軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),直線MB交⊙P于點(diǎn)D.若△AOB與以A、B、D為頂點(diǎn)的三角形相似,求MB•MD的值.(先畫出符合題意的示意圖再求解).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖(1),拋物線y=ax2-3ax+b經(jīng)過A(-1,0),C(3,-4)兩點(diǎn),與y軸交于點(diǎn)D,與x軸交于另一點(diǎn)B.
          (1)求此拋物線的解析式;
          (2)若直線L:y=kx+1(k≠0)將四邊形ABCD的面積分成相等的兩部分,求直線L的解析式;
          (3)如圖(2),過點(diǎn)E(1,1)作EF⊥x軸于點(diǎn)F,將△AEF繞平面內(nèi)某點(diǎn)旋轉(zhuǎn)180°后得△MNT(點(diǎn)M、N、T分別與點(diǎn)A,E,F(xiàn)對應(yīng)),使點(diǎn)M,N在拋物線上,求點(diǎn)M,N的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖是一座拋物線型拱橋,以橋基AB為x軸,AB的中垂線為y軸建立直角坐標(biāo)系.已知橋基AB的跨度為60米,如果水位從AB處上升5米,就達(dá)到警戒線CD處,此時(shí)水面CD的寬為30
          2
          米,求拋物線的函數(shù)解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,某地一古城墻門洞呈拋物線形,已知門洞的地面寬度AB=12米,兩側(cè)距地面5米高C、D處各有一盞路燈,兩燈間的水平距離CD=8米,求這個(gè)門洞的高度.(提示:選擇適當(dāng)?shù)奈恢脼樵c(diǎn)建立直角坐標(biāo)系,例如圖:以AB的中點(diǎn)為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系.)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知二次函數(shù)y=mx2+(m-3)x-3(m>0)的圖象如圖所示.
          (1)這條拋物線與x軸交于兩點(diǎn)A(x1,0)、B(x2,0)(x1<x2),與y軸交于點(diǎn)C,且AB=4,⊙M過A、B、C三點(diǎn),求扇形MAC的面積;
          (2)在(1)的條件下,拋物線上是否存在點(diǎn)P,使△PBD(PD垂直于x軸,垂足為D)被直線BC分成面積比為1:2的兩部分?若存在,請求出P點(diǎn)坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,拋物線y=ax2+bx+3與x軸相交于點(diǎn)A(-1,0)、B(3,0),與y軸相交于點(diǎn)C,點(diǎn)P為線段OB上的動(dòng)點(diǎn)(不與O、B重合),過點(diǎn)P垂直于x軸的直線與拋物線及線段BC分別交于點(diǎn)E、F,點(diǎn)D在y軸正半軸上,OD=2,連接DE、OF.
          (1)求拋物線的解析式;
          (2)當(dāng)四邊形ODEF是平行四邊形時(shí),求點(diǎn)P的坐標(biāo);
          (3)過點(diǎn)A的直線將(2)中的平行四邊形ODEF分成面積相等的兩部分,求這條直線的解析式.(不必說明平分平行四邊形面積的理由)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          已知:如圖所示,一次函數(shù)有y=-2x+3的圖象與x軸、y軸分別交于A、C兩點(diǎn),二次函數(shù)y=x2+bx+c的圖象過點(diǎn)C,且與一次函數(shù)在第二象限交于另一點(diǎn)B,若AC:CB=1:2,那么這二次函數(shù)的頂點(diǎn)坐標(biāo)為______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          某地計(jì)劃開鑿一條單向行駛(從正中通過)的隧道,其截面是拋物線拱形ACB,而且能通過最寬3米,最高3.5米的廂式貨車.按規(guī)定,機(jī)動(dòng)車通過隧道時(shí)車身距隧道壁的水平距離和鉛直距離最小都是0.5米.為設(shè)計(jì)這條能使上述廂式貨車恰好安全通過的隧道,在圖紙上以直線AB為x軸,線段AB的垂直平分線為y軸,建立如圖所示的直角坐標(biāo)系,求拋物線拱形的表達(dá)式、隧道的跨度AB和拱高OC.

          查看答案和解析>>

          同步練習(xí)冊答案