日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在矩形中,點(diǎn)在對(duì)角線上,以的長(zhǎng)為半徑的圓分別交于點(diǎn),且

          (1)求證:是圓所在圓的切線;

          (2)若,,求⊙O的半徑.

          【答案】(1)見(jiàn)解析;(2).

          【解析】分析:

          (1)如下圖,連接OE,由已知條件易證∠DAC=∠ACB=∠DCE,∠AEO=∠DAC,由此可得∠AEO=∠DCE,結(jié)合∠DCE+∠AEC=90°,可得∠AEO+∠DEC=90°從而可得∠CEO=180°-90°=90°,由此可得OE⊥CE,從而可得OE⊙O的切線

          (2)tan∠BAC=,BC=2可得AB=由此可得CD=,AC=,∠DCE=∠ACB可得tan∠DCE=tan∠ACB=,則DE=DCtan∠DCE=1,這樣在Rt△DCE中可得CE=,設(shè)⊙O的半徑為r,在Rt△CEO中由勾股定理建立方程,解方程即可求得r的值.

          詳解:

          (1)∵四邊形ABCD是矩形,

          ∴BC∥AD,∠ACB=∠DAC;

          ∵∠ACB=∠DCE,

          ∴∠DAC=∠DCE,

          連接OE,則∠DAC=∠AEO=∠DCE,

          ∵∠DCE+∠DEC=90°,

          ∴∠AEO+∠DEC=90°,

          ∴∠OEC=90°,即OE⊥CE,

          OE⊙O的半徑,

          直線CE⊙O相切 ;

          (2)∵tan∠BAC=,BC=2,

          ∴AB =,

          ∴AC=,

          ∵∠DCE=∠ACB,

          ∴tan∠DCE=tan∠ACB=,

          ∴DE=DCtan∠DCE=1,

          Rt△CDE中,CE=

          設(shè)⊙O的半徑為r,則在Rt△COE中,CO2=OE2+CE2,

          ,

          解得:.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知:如圖,在菱形ABCD中,點(diǎn)E,O,F(xiàn)分別為AB,AC,AD的中點(diǎn),連接CE,CF,OE,OF.

          (1)求證:△BCE≌△DCF;

          (2)當(dāng)AB與BC滿足什么關(guān)系時(shí),四邊形AEOF是正方形?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,ABC的面積為8cm2,AP垂直∠B的平分線BPP,則PBC的面積為( 。

          A. 2cm2 B. 3cm2 C. 4cm2 D. 5cm2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】綜合與探究

          閱讀理解:數(shù)軸是學(xué)習(xí)有理數(shù)的一種重要工具,任何有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,這樣能夠運(yùn)用數(shù)形結(jié)合的方法解決一些問(wèn)題.例如,兩個(gè)有理數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)之間的距離可以用較大數(shù)與較小數(shù)的差來(lái)表示.例如:

          在數(shù)軸上,有理數(shù)31對(duì)應(yīng)的兩點(diǎn)之間的距離為

          在數(shù)軸上,有理數(shù)3與-2對(duì)應(yīng)的兩點(diǎn)之間的距離為

          在數(shù)軸上,有理數(shù)-3與-2對(duì)應(yīng)的兩點(diǎn)之間的距離為.

          解決問(wèn)題:如圖所示,已知點(diǎn)表示的數(shù)為-3,點(diǎn)表示的數(shù)為-1,點(diǎn)表示的數(shù)為2.

          1)點(diǎn)和點(diǎn)之間的距離為______.

          2)若數(shù)軸上動(dòng)點(diǎn)表示的數(shù)為,當(dāng)時(shí),點(diǎn)和點(diǎn)之間的距離可表示為______;當(dāng)時(shí),點(diǎn)和點(diǎn)之間的距離可表示為______.

          3)若數(shù)軸上動(dòng)點(diǎn)表示的數(shù)為,點(diǎn)在點(diǎn)和點(diǎn)之間,點(diǎn)和點(diǎn)之間的距離表示為,點(diǎn)和點(diǎn)之間的距離表示為,求(用含的代數(shù)式表示并進(jìn)行化簡(jiǎn))

          4)若數(shù)軸上動(dòng)點(diǎn)表示的數(shù)為-2,將點(diǎn)向右移動(dòng)19個(gè)單位長(zhǎng)度,再向左移動(dòng)23個(gè)單位長(zhǎng)度終點(diǎn)為,那么,兩點(diǎn)之間的距離是______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知反比例函數(shù)的圖象經(jīng)過(guò)第二象限內(nèi)的點(diǎn)A(,4),AB⊥x軸于點(diǎn)B,△AOB的面積為2,若直線經(jīng)過(guò)點(diǎn)A,并且經(jīng)過(guò)反比例函數(shù)的圖象上另一點(diǎn)C(2,).

          (1)求反比例函數(shù)和直線的解析式;

          (2)設(shè)直線軸交于點(diǎn)M,求AM的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下圖的數(shù)陣是由全體奇數(shù)排成:

          (1)圖中平行四邊形框內(nèi)的九個(gè)數(shù)之和與中間的數(shù)有什么關(guān)系?

          (2)在數(shù)陣圖中任意作一類似(1)中的平行四邊形框,這九個(gè)數(shù)之和還有這種規(guī)律嗎?請(qǐng)說(shuō)出理由;

          (3)這九個(gè)數(shù)之和能等于1998嗎?2005,1017呢?若能,請(qǐng)寫(xiě)出這九個(gè)數(shù)中最小的一個(gè);若不能,請(qǐng)說(shuō)出理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下圖是昌平區(qū)20191月份每天的最低和最高氣溫,觀察此圖,下列說(shuō)法正確的是( )

          A.1月份中,最高氣溫為10℃,最低氣溫為-2℃

          B.10號(hào)至16號(hào)的氣溫中,每天溫差最小為7℃

          C.每天的最高氣溫均高于0℃,最低氣溫均低于0℃

          D.每天的最高氣溫與最低氣溫都是具有相反意義的量

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知邊長(zhǎng)為4的正方形ABCD,頂點(diǎn)A與坐標(biāo)原點(diǎn)重合,一反比例函數(shù)圖象過(guò)頂點(diǎn)C,動(dòng)點(diǎn)P以每秒1個(gè)單位速度從點(diǎn)A出發(fā)沿AB方向運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)以每秒4個(gè)單位速度從D點(diǎn)出發(fā)沿正方形的邊DCCBBA方向順時(shí)針折線運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)Q相遇時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t

          1)求出該反比例函數(shù)解析式;

          2)連接PD,當(dāng)以點(diǎn)Q和正方形的某兩個(gè)頂點(diǎn)組成的三角形和△PAD全等時(shí),求點(diǎn)Q的坐標(biāo);

          3)用含t的代數(shù)式表示以點(diǎn)Q、P、D為頂點(diǎn)的三角形的面積s,并指出相應(yīng)t的取值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如果有一列數(shù),從這列數(shù)的第2個(gè)數(shù)開(kāi)始,每一個(gè)數(shù)與它的前一個(gè)數(shù)的比等于同一個(gè)非零的常數(shù),這樣的一列數(shù)就叫做等比數(shù)列(Geometric Sequences).這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母q表示(q0).

          1)觀察一個(gè)等比列數(shù)1,,…,它的公比q   ;如果ann為正整數(shù))表示這個(gè)等比數(shù)列的第n項(xiàng),那么a18   ,an   

          2)如果欲求1+2+4+8+16++230的值,可以按照如下步驟進(jìn)行:

          S1+2+4+8+16++230

          等式兩邊同時(shí)乘以2,得2S2+4+8+16++32++231

          式,得2SS2311

          即(21S2311

          所以

          請(qǐng)根據(jù)以上的解答過(guò)程,求3+32+33++323的值;

          3)用由特殊到一般的方法探索:若數(shù)列a1,a2,a3,…,an,從第二項(xiàng)開(kāi)始每一項(xiàng)與前一項(xiàng)之比的常數(shù)為q,請(qǐng)用含a1,qn的代數(shù)式表示an;如果這個(gè)常數(shù)q1,請(qǐng)用含a1,q,n的代數(shù)式表示a1+a2+a3++an

          查看答案和解析>>

          同步練習(xí)冊(cè)答案