日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,在等邊△ABC中,點(diǎn)D是邊AC的中點(diǎn),點(diǎn)P是線段DC上的動(dòng)點(diǎn)(點(diǎn)

          P與點(diǎn)C不重合),連結(jié)BP. 將△ABP繞點(diǎn)P按順時(shí)針?lè)较蛐D(zhuǎn)α角(0°<α<180°),得

          到△A1B1P,連結(jié)AA1,射線AA1分別交射線PB、射線B1B于點(diǎn)E、F.

          (1) 如圖1,當(dāng)0°<α<60°時(shí),在α角變化過(guò)程中,△BEF與△AEP始終存在    關(guān)

          系(填“相似”或“全等”),并說(shuō)明理由;

          (2)如圖2,設(shè)∠ABP=β . 當(dāng)60°<α<180°時(shí),在α角變化過(guò)程中,是否存在△BEF與△

          AEP全等?若存在,求出α與β之間的數(shù)量關(guān)系;若不存在,請(qǐng)說(shuō)明理由;

          (3)如圖3,當(dāng)α=60°時(shí),點(diǎn)E、F與點(diǎn)B重合. 已知AB=4,設(shè)DP=x,△A1BB1的面積為

          S,求S關(guān)于x的函數(shù)關(guān)系式.

           

          【答案】

          解: (1) 相似   ………………………………………………………………1分

          由題意得:∠APA1=∠BPB1=α   AP= A1P  BP=B1P

          則  ∠PAA1 =∠PBB1 = …………………………………2分

          ∵∠PBB1 =∠EBF        ∴∠PAE=∠EBF

          又∵∠BEF=∠AEP

          ∴△BEF ∽△AEP……………………………………………………………3分

          (2)存在,理由如下: ………………………………………………………………4分

          易得:△BEF ∽△AEP

          若要使得△BEF≌△AEP,只需要滿(mǎn)足BE=AE即可 ………………………5分

          ∴∠BAE=∠ABE

          ∵∠BAC=60°       ∴∠BAE=

          ∵∠ABE=β   ∠BAE=∠ABE     ……………………………………………6分

           即α=2β+60°     ……………………………………………7分

          (3)連結(jié)BD,交A1B1于點(diǎn)G,過(guò)點(diǎn)A1作A1H⊥AC于點(diǎn)H.

          ∵∠B1 A1P=∠A1PA=60° ∴A1B1∥AC

          由題意得:AP= A1 P   ∠A=60°

          ∴△PAA1是等邊三角形

          ∴A1H= ………………………………………………………………8分

          在Rt△ABD中,BD=

          ∴BG=…………………………………… 9分

           (0≤x<2)……………………10分

          【解析】略

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖1,在等邊△ABC中,AD是∠BAC的平分線,一個(gè)含有120°角的△MPN的頂點(diǎn)P(∠MPN=120°)與點(diǎn)D重合,一邊與AB垂直于點(diǎn)E,另一邊與AC交于點(diǎn)F.
          (1)請(qǐng)猜想并寫(xiě)出AE+AF與AD之間滿(mǎn)足的數(shù)量關(guān)系,不必證明.
          (2)在圖1的基礎(chǔ)上,若△MPN繞著它的頂點(diǎn)P旋轉(zhuǎn),E、F仍然是△MPN的兩邊與AB、AC的交點(diǎn),當(dāng)三角形紙板的邊不與AB垂直時(shí),如圖2,(1)中猜想是否仍然成立?說(shuō)明理由.
          (3)如圖3,若△MPN繞著它的頂點(diǎn)P旋轉(zhuǎn),當(dāng)△MPN的一邊與AB的延長(zhǎng)線相交,另一邊與AC的反向延長(zhǎng)線相交時(shí),AE、AF與AD之間又滿(mǎn)足怎樣的數(shù)量關(guān)系?直接寫(xiě)出結(jié)論,不必證明.精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖1,在等邊△ABC中,點(diǎn)D是邊AC的中點(diǎn),點(diǎn)P是線段DC上的動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)C不重合),連接BP.將△ABP繞點(diǎn)P按順時(shí)針?lè)较蛐D(zhuǎn)α角(0°<α<180°),得到△A1B1P,連接AA1,射線AA1分別交射線PB、射線B1B于點(diǎn)E、F.
          (1)如圖1,當(dāng)0°<α<60°時(shí),在α角變化過(guò)程中,△BEF與△AEP始終存在
           
          關(guān)系(填“相似”或“全等”),并說(shuō)明理由;
          (2)如圖2,設(shè)∠ABP=β.當(dāng)60°<α<180°時(shí),在α角變化過(guò)程中,是否存在△BEF與△AEP全等?若存在,求出α與β之間的數(shù)量關(guān)系;若不存在,請(qǐng)說(shuō)明理由;
          (3)如圖3,當(dāng)α=60°時(shí),點(diǎn)E、F與點(diǎn)B重合.已知AB=4,設(shè)DP=x,△A1BB1的面積為S,求S關(guān)于x的函數(shù)關(guān)系式.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          觀察發(fā)現(xiàn)
          (1)如圖1,若點(diǎn)A、B在直線l同側(cè),在直線l上找一點(diǎn)P,使AP+BP的值最。
          作法如下:作點(diǎn)B關(guān)于直線l的對(duì)稱(chēng)點(diǎn)B′,連接AB′,與直線l的交點(diǎn)就是所求的點(diǎn)P.
          (2)如圖2,在等邊三角形ABC中,AB=4,點(diǎn)E是AB的中點(diǎn),AD是高,在AD上找一點(diǎn)P,使BP+PE的值最小.
          作法如下:作點(diǎn)B關(guān)于AD的對(duì)稱(chēng)點(diǎn),恰好與點(diǎn)C重合,連接CE交AD于一點(diǎn),則這點(diǎn)就是所求的點(diǎn)P,故BP+PE的最小值為
          2
          3
          2
          3

          實(shí)踐運(yùn)用
          如圖3,菱形ABCD中,對(duì)角線AC、BD分別為6和8,M、N分別是邊BC、CD的中點(diǎn),若點(diǎn)P是BD上的動(dòng)點(diǎn),則MP+PN的最小值是
          5
          5

          拓展延伸
          (1)如圖4,正方形ABCD的邊長(zhǎng)為5,∠DAC的平分線交DC于點(diǎn)E.若點(diǎn)P,Q分別是AD和AE上的動(dòng)點(diǎn),則DQ+PQ的最小值是
          5
          2
          2
          5
          2
          2
          ;
          (2)如圖5,在四邊形ABCD的對(duì)角線BD上找一點(diǎn)P,使∠APB=∠CPB.保留畫(huà)圖痕跡,并簡(jiǎn)要寫(xiě)出畫(huà)法.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          請(qǐng)閱讀下列材料?:
          問(wèn)題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=
          3
          ,PC=1.求∠BPC度數(shù)的大小和等邊三角形ABC的邊長(zhǎng).
          李明同學(xué)的思路是:將△BPC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,畫(huà)出旋轉(zhuǎn)后的圖形(如圖2).連接PP′,可得△P′PB是等邊三角形(可證),而△PP′A又是直角三角形(由勾股定理的逆定理可證).所以∠AP′B=150°,而∠BPC=∠AP′B=150°.進(jìn)而把AB放在Rt△APB(可證得)中,用勾股定理求出等邊△ABC的邊長(zhǎng)為
          7
          .問(wèn)題得到解決.?
          [思路分析]首先仔細(xì)閱讀材料,問(wèn)題中小明的做法總結(jié)起來(lái)就是通過(guò)旋轉(zhuǎn)固定的角度將已知條件放在同一個(gè)(組)圖形中進(jìn)行研究.旋轉(zhuǎn)60度以后BP就成了BP′,PC成了P′A,借助等量關(guān)系BP′=PP′,于是△APP′就可以計(jì)算了.
          解決問(wèn)題:
          請(qǐng)你參考李明同學(xué)旋轉(zhuǎn)的思路,探究并解決下列問(wèn)題:
          如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=
          5
          ,BP=
          2
          ,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (1)畫(huà)圖探究:
          如圖1,若點(diǎn)A、B在直線m同側(cè),在直線m上求作一點(diǎn)P,使AP+BP的值最小,保留作圖痕跡,不寫(xiě)作法;
          (2)實(shí)踐運(yùn)用:
          如圖2,在等邊△ABC中,AB=2,點(diǎn)E是AB的中點(diǎn),AD是高,點(diǎn)P是高AD上一個(gè)動(dòng)點(diǎn),求BP+PE的最小值
          (3)拓展延伸:
          如圖3,四邊形ABCD中,∠BAD=125°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長(zhǎng)最小,并求此時(shí)∠MAN的度數(shù).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案