日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知一個三角形紙片ACB,其中∠ACB=90°,AC=8,BC=6,E、F分別是AC、AB邊上的點,連接EF.(1)如圖1,若將紙片ACB的一角沿EF折疊,折疊后點A落在AB邊上的點D處,且使S四邊形ECBF=4SEDF,求ED的長;

          (2)如圖2,若將紙片ACB的一角沿EF折疊,折疊后點A落在BC邊上的點M處,且使MFCA.

          ①試判斷四邊形AEMF的形狀,并證明你的結論;

          ②求EF的長;

          (3)如圖3,若FE的延長線與BC的延長線交于點N,CN=2,CE=,求的值.

          【答案】(1)2;(2);(3)

          【解析】試題分析:1)先利用折疊的性質得到 ,則易得SABC=5SAEF,再證明然后根據(jù)相似三角形的性質得到再利用勾股定理求出AB即可得到AE的長;
          2①通過證明四條邊相等判斷四邊形AEMF為菱形;
          ②連結AMEF于點O,如圖②,先證明 得到解出后計算出再利用勾股定理計算出AM,然后根據(jù)菱形的面積公式計算EF
          3)如圖③,作作H,先證明利用相似比得到,則 再證明利用相似比可計算出則可計算出,接著利用勾股定理計算出,從而得到的長,于是可計算出的值.

          試題解析:1的一角沿EF折疊,折疊后點A落在AB邊上的點D處,

          , ,

          S四邊形ECBF=

          SABC=5SAEF,

          Rt 中,∵

          由折疊知,

          2①連結AMEF于點O,如圖2

          的一角沿EF折疊,折疊后點A落在AB邊上的點D處,

          MFAC,

          ∴四邊形AEMF為菱形,

          ②設

          ∵四邊形AEMF為菱形,

          EMAB,

          解得

          Rt 中,

          S菱形AEMF

          3)如圖③,作H

          ECFH,

          ,則

          FHAC,

          Rt 中,

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】某校隨機抽取本校部分同學,調查同學了解母親生日日期的情況,分知道、不知道、記不清三種.下面圖①、圖②是根據(jù)采集到的數(shù)據(jù),繪制的扇形和條形統(tǒng)計圖.

          請你要根據(jù)圖中提供的信息,解答下列問題:

          1)求本次被調查學生的人數(shù),并補全條形統(tǒng)計圖;

          2)在圖①中,求出不知道部分所對應的圓心角的度數(shù);

          3)若全校共有1440名學生,請你估計這所學校有多少名學生知道母親的生日?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】將一副三角板中的兩塊直角三角板的直角頂點C按如圖方式疊放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.

          (1)①若∠DCB=45°,則∠ACB的度數(shù)為   

          若∠ACB=140°,則∠DCE的度數(shù)為   

          (2)(1)猜想∠ACB與∠DCE的數(shù)量關系,并說明理由.

          (3)當∠ACE<90°且點E在直線AC的上方時,當這兩塊三角尺有一組邊互相平行時,請直接寫出∠ACE角度所有可能的值(不必說明理由).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知線段ab,∠α(如圖)

          (1)以線段a,b為一組鄰邊作平行四邊形,這樣的平行四邊形能作____個.

          (2)以線段a,b為一組鄰邊,它們的夾角為∠α,作平行四邊形,這樣的平行四邊形能作_____個,作出滿足條件的平行四邊形(要求僅用直尺和圓規(guī),保留作圖痕跡,不寫做法)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】幻方起源于中國,傳說在大禹治水時,有只神龜在洛水中浮起,龜背上有奇特的圖案,如圖1,人們稱之為洛書.如果將龜背上的數(shù)字翻譯出來,如圖2

          觀察發(fā)現(xiàn),圖2的每行、每列、每條對角線的三個數(shù)之和都是15.像這樣,在3×3的方陣圖中,每行、每列、每條對角線上3個數(shù)的和都相等,我們就稱它為三階幻方.上面的三階幻方中,15是這個幻方的和,簡稱幻和.5是幻方最中心的數(shù)字,簡稱中心數(shù).

          1)用﹣10,﹣8,﹣6,﹣4,﹣20,24,6這九個數(shù)字補全圖3中的幻方;

          2)如圖4是一個三階幻方,試確定圖4x的值,并給出求解過程.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在RtABC中,∠ACB=90°,DAB中點,AECD,CEAB.

          (1)試判斷四邊形ADCE的形狀,并證明你的結論.

          (2)連接BE,若∠BAC=30°,CE=1,求BE的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,直線lx軸相交于點M(3,0),與y軸相交于點N(0,4),點AMN的中點,反比例函數(shù)y=(x0)的圖象過點A.

          (1)求直線l和反比例函數(shù)的解析式;

          (2)在函數(shù)y=(k0)的圖象上取異于點A的一點C,作CBx軸于點B,連接OC交直線l于點P,若△ONP的面積是△OBC面積的3倍,求點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,為探測某座山的高度AB,某飛機在空中C處測得山頂A處的俯角為31°,此時飛機的飛行高度為CH=4千米;保持飛行高度與方向不變,繼續(xù)向前飛行2千米到達D處,測得山頂A處的俯角為50°,求此山的高度AB.(參考數(shù)據(jù):tan31°≈0.6,1an50°≈1.2)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知多項式(2x2+ax-y+6-2bx22x 5y1.

          1)若多項式的值與字母x的取值無關,求a、b的值.

          2)在(1)的條件下,先化簡多項式3a-ab+b-a+ ab+ b),再求它的值.

          3)在(1)的條件下,求(b+a2+2b+a2+3b+a2+…+9b+a2)的值.

          查看答案和解析>>

          同步練習冊答案