日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】問題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.

          (1)【發(fā)現(xiàn)證明】
          小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請(qǐng)你利用圖(1)證明上述結(jié)論.
          (2)【類比引申】
          如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足關(guān)系時(shí),仍有EF=BE+FD.
          (3)【探究應(yīng)用】
          如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=40( ﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(zhǎng)(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)

          【答案】
          (1)

          證明:如圖(1),

          ∵△ADG≌△ABE,

          ∴AG=AE,∠DAG=∠BAE,DG=BE,

          又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,

          ∴∠GAF=∠FAE,

          在△GAF和△FAE中,

          ,

          ∴△AFG≌△AFE(SAS),

          ∴GF=EF,

          又∵DG=BE,

          ∴GF=BE+DF,

          ∴BE+DF=EF


          (2)∠BAD=2∠EAF
          (3)

          如圖3,把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)150°至△ADG,連接AF,過A作AH⊥GD,垂足為H.

          ∵∠BAD=150°,∠DAE=90°,

          ∴∠BAE=60°.

          又∵∠B=60°,

          ∴△ABE是等邊三角形,

          ∴BE=AB=80米.

          根據(jù)旋轉(zhuǎn)的性質(zhì)得到:∠ADG=∠B=60°,

          又∵∠ADF=120°,

          ∴∠GDF=180°,即點(diǎn)G在 CD的延長(zhǎng)線上.

          易得,△ADG≌△ABE,

          ∴AG=AE,∠DAG=∠BAE,DG=BE,

          又∵AH=80× =40 ,HF=HD+DF=40+40( ﹣1)=40

          故∠HAF=45°,

          ∴∠DAF=∠HAF﹣∠HAD=45°﹣30°=15°

          從而∠EAF=∠EAD﹣∠DAF=90°﹣15°=75°

          又∵∠BAD=150°=2×75°=2∠EAF

          ∴根據(jù)上述推論有:EF=BE+DF=80+40( ﹣1)≈109(米),即這條道路EF的長(zhǎng)約為109米.


          【解析】【類比引申】延長(zhǎng)CB至M,使BM=DF,連接AM,證△ADF≌△ABM,證△FAE≌△MAE,即可得出答案;
          【探究應(yīng)用】利用等邊三角形的判定與性質(zhì)得到△ABE是等邊三角形,則BE=AB=80米.把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)150°至△ADG,只要再證明∠BAD=2∠EAF即可得出EF=BE+FD.
          【類比引申】∠BAD=2∠EAF.
          理由如下:如圖(2),延長(zhǎng)CB至M,使BM=DF,連接AM,
          ∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,
          ∴∠D=∠ABM,
          在△ABM和△ADF中,
          ,
          ∴△ABM≌△ADF(SAS),
          ∴AF=AM,∠DAF=∠BAM,
          ∵∠BAD=2∠EAF,
          ∴∠DAF+∠BAE=∠EAF,
          ∴∠EAB+∠BAM=∠EAM=∠EAF,
          在△FAE和△MAE中,
          ,
          ∴△FAE≌△MAE(SAS),
          ∴EF=EM=BE+BM=BE+DF,
          即EF=BE+DF.
          故答案是:∠BAD=2∠EAF.

          【考點(diǎn)精析】掌握旋轉(zhuǎn)的性質(zhì)是解答本題的根本,需要知道①旋轉(zhuǎn)后對(duì)應(yīng)的線段長(zhǎng)短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列說法正確的有_______________(請(qǐng)?zhí)顚懰姓_結(jié)論的序號(hào))

          ①在一個(gè)裝有2白球和3個(gè)紅球的袋中摸3個(gè)球,摸到紅球是必然事件.②若,則 ③已知反比例函數(shù),若,則; ④分式是最簡(jiǎn)分式 ; ⑤ 是同類二次根式;

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知點(diǎn)A、C分別在GBE的邊BG、BE上,且AB=AC,ADBEGBE的平分線與AD交于點(diǎn)D,連接CD.

          (1)求證:①AB=AD;②CD平分ACE

          (2)猜想BDCBAC之間有何數(shù)量關(guān)系?并對(duì)你的猜想加以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】像一個(gè)人臉郁悶的神情.如圖,邊長(zhǎng)為a的正方形紙片,剪去兩個(gè)一樣的小直角三角形和一個(gè)長(zhǎng)方形得到一個(gè)字圖案(陰影部分),設(shè)剪去的兩個(gè)小直角三角形的兩直角邊長(zhǎng)分別為x、y,剪去的小長(zhǎng)方形長(zhǎng)和寬也分別為x,y.

          (1)用式子表示的面積S;(用含a、x、y的式子表示)

          (2)當(dāng)a=20,x=5,y=4時(shí),求S的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】綜合與實(shí)踐

          問題情境:在棱長(zhǎng)為1的正方體右側(cè)拼搭若干個(gè)棱長(zhǎng)小于或等于1的其它正方體,使拼成的立體圖形為一個(gè)長(zhǎng)方體.如圖1,是兩個(gè)棱長(zhǎng)為1的正方體搭成的長(zhǎng)方體,圖2是從上面看這個(gè)長(zhǎng)方體得到的平面圖形,它由兩個(gè)正方形組成.

          操作探究:

          (1)如圖3是在棱長(zhǎng)為1的正方體右側(cè)拼搭了4個(gè)棱長(zhǎng)小于1的正方體形成的長(zhǎng)方體,請(qǐng)畫出從上面看這個(gè)長(zhǎng)方體得到的平面圖形;

          (2)已知一個(gè)長(zhǎng)方體是按上述方式拼成的,組成它的正方體不超過10個(gè),且若從上面看這個(gè)長(zhǎng)方體得到的平面圖形由4個(gè)正方形組成.

          請(qǐng)從A,B兩題中任選一題作答,我選擇   題.

          A.請(qǐng)畫出從上面看這個(gè)長(zhǎng)方體得到的平面圖形.(請(qǐng)畫出所有可能的圖形)

          B.請(qǐng)畫出從上面看這個(gè)長(zhǎng)方體得到的平面圖形.(請(qǐng)畫出所有可能的圖形,并在所畫圖形的下方直接寫出拼成該長(zhǎng)方體所需的正方體的總個(gè)數(shù))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,菱形ABCD的邊長(zhǎng)為48cm,∠A=60°,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著線路AB﹣BD做勻速運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)D同時(shí)出發(fā),沿著線路DC﹣CB﹣BA做勻速運(yùn)動(dòng).

          (1)求BD的長(zhǎng);

          (2)已知?jiǎng)狱c(diǎn)P、Q運(yùn)動(dòng)的速度分別為8cm/s、10cm/s.經(jīng)過12秒后,P、Q分別到達(dá)M、N兩點(diǎn),試判斷△AMN的形狀,并說明理由,同時(shí)求出△AMN的面積;

          (3)設(shè)問題(2)中的動(dòng)點(diǎn)P、Q分別從M、N同時(shí)沿原路返回,動(dòng)點(diǎn)P的速度不變,動(dòng)點(diǎn)Q的速度改變?yōu)閍 cm/s,經(jīng)過3秒后,P、Q分別到達(dá)E、F兩點(diǎn),若△BEF為直角三角形,試求a的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知直線AB經(jīng)過點(diǎn)O,∠COD=90°,OE∠BOC的平分線.

          (1)如圖1,若∠AOC=50°,求∠DOE;

          (2)如圖1,若∠AOC=α,∠DOE;(用含α的式子表示)

          (3)將圖1中的∠COD繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)到圖2的位置,其它條件不變,(2)中的結(jié)論是否還成立?試說明理由;

          (4)將圖1中的∠COD繞頂點(diǎn)O逆時(shí)針旋轉(zhuǎn)到圖3的位置,其它條件不變,求∠DOE.(用含α的式子表示)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,等腰直角△ABC中,∠ACB=90°,點(diǎn)E為△ABC內(nèi)一點(diǎn),且∠BEC=90°,將△BEC繞C點(diǎn)順時(shí)針旋轉(zhuǎn)90°,使BC與AC重合,得到△AFC,連接EF交AC于點(diǎn)M,已知BC=10,CF=6,則AM:MC的值為(
          A.4:3
          B.3:4
          C.5:3
          D.3:5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】平面直角坐標(biāo)系中,已知A(2,2)、B(4,0).若在坐標(biāo)軸上取點(diǎn)C,使△ABC為等腰三角形,則滿足條件的點(diǎn)C的個(gè)數(shù)是(
          A.5
          B.6
          C.7
          D.8

          查看答案和解析>>

          同步練習(xí)冊(cè)答案