日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】《函數(shù)的圖象與性質(zhì)》拓展學習展示:

          (問題)如圖1,在平面直角坐標系中,拋物線G1x軸相交于A-1,0),B30)兩點,與y軸交于點C,則a= ,b=

          (操作)將圖1中拋物線G1沿BC方向平移BC長度的距離得到拋物線G2G2y軸左側(cè)的部分與G1y軸右側(cè)的部分組成的新圖象記為G,如圖②.請直接寫出圖象G對應的函數(shù)解析式.

          (探究)在圖2中,過點C作直線l平行于x軸,與圖象G交于D,E兩點.求圖象G在直線l上方的部分對應的函數(shù)yx的增大而增大時x的取值范圍.

          (應用)P是拋物線G2對稱軸上一個動點,當PDE是直角三角形時,直接寫出P點的坐標.

          【答案】問題:1;操作:;探究:-4x-20x1;應用:(-2+)或(-2,-.

          【解析】

          問題:利用待定系數(shù)法將AB的坐標代入,求出ab的值即可;

          操作:根據(jù)題意求出平移后的拋物線G2的表達式,結(jié)合G1的表達式即可得出結(jié)果;

          探究:畫出圖像,求出兩部分的拋物線的對稱軸,以及DE的坐標,結(jié)合開口方向,可得x的取值范圍;

          應用:由題意判斷出∠DPE=90°,在△DPE中利用勾股定理求出PQ的長,從而得出點P坐標.

          解:問題:∵拋物線x軸交于A-1,0),B3,0)兩點,

          ,

          解得:,

          故答案為:1;

          操作:∵拋物線G1沿BC方向平移BC長度的距離得到拋物線G2

          B3,0),C0,),,

          ∴平移后的拋物線G2的表達式為,

          G2y軸左側(cè)的部分與G1y軸右側(cè)的部分組成的新圖象記為G

          ∴圖像G的解析式為;

          探究:由題意可得:當x≥0時,,開口向下,對稱軸為直線x=1,

          y=0,解得:x1=0,x2=2,

          E2),

          ∴當0x1時,yx增大而增大;

          x0時,,開口向下,對稱軸為直線x=-2,

          y=0,解得:x1=-4,x2=0,

          ∴點D-4),

          ∴當-4x-2時,yx增大而增大;

          綜上:圖象G在直線l上方的部分對應的函數(shù)yx的增大而增大時,

          x的取值范圍是當-4x-20x1;

          應用:∵△PDE是直角三角形,P是拋物線G2對稱軸上一個動點,

          ∴只存在∠DPE=90°,

          由題意得:D-4,),E2,),

          當點P在直線l上方時,如圖,設直線lG2的對稱軸交于點Q,

          可得Q-2),

          DQ=2,QE=4DE=6,PQDE,

          PQ=m,在△PDQ和△PEQ中,

          PQ2+DQ2=PD2PQ2+QE2=PE2,

          ,

          在△PDE中,PD2+PE2=DE2,

          解得:m=m=(舍),

          m+=+

          ∴點P的坐標為(-2,+),

          當點P在直線l下方時,同理PQ=,

          此時點P的坐標為(-2,-),

          綜上:點P的坐標為(-2,+)或(-2,-.

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系xOy中,將拋物線y=﹣x2+bx+c與直線y=﹣x+1相交于點A(0,1)和點B(3,﹣2),交x軸于點C,頂點為點F,點D是該拋物線上一點.

          1)求拋物線的函數(shù)表達式;

          2)如圖1,若點D在直線AB上方的拋物線上,求DAB的面積最大時點D的坐標;

          3)如圖2,若點D在對稱軸左側(cè)的拋物線上,且點E1t)是射線CF上一點,當以C、B、D為頂點的三角形與CAE相似時,求所有滿足條件的t的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】2019418日,臺灣省花蓮善線發(fā)生里氏級地震,救援隊救援時,利用生命探測儀在某建筑物廢墟下方探測到點處有生命跡象,已知廢墟一側(cè)地面上兩探測點相距6米,探測線與地面的夾角分別為,如圖所示,試確定生命所在點的深度(結(jié)果精確到米,參考數(shù)據(jù))

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,、的對角線上,,,則的大小為( ).

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知二次函數(shù)的圖象經(jīng)過點.

          1)當時,若點在該二次函數(shù)的圖象上,求該二次函數(shù)的表達式;

          2)已知點,在該二次函數(shù)的圖象上,求的取值范圍;

          3)當時,若該二次函數(shù)的圖象與直線交于點,,且,求的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】為了測量豎直旗桿AB的高度,某綜合實踐小組在地面D處豎直放置標桿CD,并在地面上水平放置一個平面鏡E,使得BE,D在同一水平線上(如圖所示).該小組在標桿的F處通過平面鏡E恰好觀測到旗桿頂A(此時∠AEB=∠FED),在F處測得旗桿頂A的仰角為45°,平面鏡E的俯角為67°,測得FD2.4米.求旗桿AB的高度約為多少米?(結(jié)果保留整數(shù),參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知四邊形ABCD是菱形,BCx軸,點B的坐標是(1,),坐標原點OAB的中點.動圓⊙P的半徑是,圓心在x軸上移動,若⊙P在運動過程中只與菱形ABCD的一邊相切,則點P的橫坐標m 的取值范圍是_________

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知:如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于一、三象限內(nèi)的兩點,與軸交于點,點的坐標為,點的坐標為,

          1)求該反比例函數(shù)和一次函數(shù)的解析式;

          2)直接寫出關(guān)于的不等式的解集;

          3)連接,求的面積.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,四邊形ABCD是菱形,AB=2,且∠ABC=ABE=60°,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接EN、AMCM,則AM+BM+CM的最小值為_________.

          查看答案和解析>>

          同步練習冊答案