日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知A是拋物線y2=4x上的一點(diǎn),以點(diǎn)A和點(diǎn)B(2,0)為直徑的圓C交直線x=1于M,N兩點(diǎn).直線l與AB平行,且直線l交拋物線于P,Q兩點(diǎn).
          (Ⅰ)求線段MN的長(zhǎng);
          (Ⅱ)若 =﹣3,且直線PQ與圓C相交所得弦長(zhǎng)與|MN|相等,求直線l的方程.

          【答案】解:(Ⅰ)設(shè)A( ,y0),則C的方程為(x﹣2)(x﹣ +y(y﹣y0)=0, 令x=1,得y2﹣y0y+ ﹣1=0,
          ∴|MN|=|y1﹣y2|= =2;
          (Ⅱ)設(shè)直線l的方程為x=my+n,代入拋物線方程得y2﹣4my﹣4n=0,
          ∴y1+y2=4m,y1y2=﹣4n
          =﹣3,
          ∴x1x2+y1y2= +y1y2=﹣3,
          ∴n2﹣4n+3=0,
          ∴n=1或3,此時(shí)B(2,0)到直線l的距離d=
          由題意,圓心C到直線l的距離等于到直線x=1的距離,
          =
          ∵m= ,
          =64,
          =8,
          ∴m=0,
          ∴直線l的方程為x=3,
          綜上,直線l的方程為x=1或x=3.
          【解析】(Ⅰ)C的方程為(x﹣2)(x﹣ +y(y﹣y0)=0,令x=1,得y2﹣y0y+ ﹣1=0,利用韋達(dá)定理及弦長(zhǎng)公式求線段MN的長(zhǎng);(Ⅱ)設(shè)直線l的方程為x=my+n,代入拋物線方程,利用 =﹣3,求出n,直線PQ與圓C相交所得弦長(zhǎng)與|MN|相等,求出m,即可求直線l的方程.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,將正方形ABCD折疊,使頂點(diǎn)A與CD邊上的一點(diǎn)H重合(H不與端點(diǎn)C,D重合),折痕交AD于點(diǎn)E,交BC于點(diǎn)F,邊AB折疊后與邊BC交于點(diǎn)G.設(shè)正方形ABCD的周長(zhǎng)為m,△CHG的周長(zhǎng)為n,則 的值為(
          A.
          B.
          C.
          D.隨H點(diǎn)位置的變化而變化

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)PBC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),現(xiàn)將△PCD沿直線PD折疊,使點(diǎn)C落到點(diǎn)C’處;作∠BPC’的角平分線交AB于點(diǎn)E . 設(shè)BP=x , BE=y , 則下列圖象中,能表示yx的函數(shù)關(guān)系的圖象大致是( )

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓C: + =1(a>0,b>0)的離心率為 ,右焦點(diǎn)為F,上頂點(diǎn)為A,且△AOF的面積為 (O為坐標(biāo)原點(diǎn)).

          (1)求橢圓C的方程;
          (2)設(shè)P是橢圓C上的一點(diǎn),過(guò)P的直線與以橢圓的短軸為直徑的圓切于第一象限內(nèi)的一點(diǎn)M,證明:|PF|+|PM|為定值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一個(gè)袋中裝有1紅,2白和2黑共5個(gè)小球,這5個(gè)小球除顏色外其它都相同,現(xiàn)從袋中任取2個(gè)球,則至少取到1個(gè)白球的概率為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=x3+ax2+bx有兩個(gè)極值點(diǎn)x1、x2 , 且x1<x2 , 若x1+2x0=3x2 , 函數(shù)g(x)=f(x)﹣f(x0),則g(x)(
          A.恰有一個(gè)零點(diǎn)
          B.恰有兩個(gè)零點(diǎn)
          C.恰有三個(gè)零點(diǎn)
          D.至多兩個(gè)零點(diǎn)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=|x+2a|+|x﹣1|.
          (1)若a=1,解不等式f(x)≤5;
          (2)當(dāng)a≠0時(shí), ,求滿足g(a)≤4的a的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知兩動(dòng)圓F1:(x+ 2+y2=r2和F2:(x﹣ 2+y2=(4﹣r)2(0<r<4),把它們的公共點(diǎn)的軌跡記為曲線C,若曲線C與y軸的正半軸的交點(diǎn)為M,且曲線C上的相異兩點(diǎn)A、B滿足: =0.
          (1)求曲線C的方程;
          (2)證明直線AB恒經(jīng)過(guò)一定點(diǎn),并求此定點(diǎn)的坐標(biāo);
          (3)求△ABM面積S的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】小強(qiáng)很喜歡操作探究問(wèn)題,他把一條邊長(zhǎng)為8cm的線段AB放在直角坐標(biāo)系中,使點(diǎn)A在y軸的正半軸上,點(diǎn)B在x軸的正半軸上,點(diǎn)P為線段AB的中點(diǎn).在平面直角坐標(biāo)系中進(jìn)行操作探究:當(dāng)點(diǎn)B從點(diǎn)O出發(fā)沿x軸正方向移動(dòng),同時(shí)頂點(diǎn)A隨之從y正半軸上一點(diǎn)移動(dòng)到點(diǎn)O為止.小強(qiáng)發(fā)現(xiàn)了兩個(gè)正確的結(jié)論:

          (1)點(diǎn)P到原點(diǎn)的距離始終是一個(gè)常數(shù),則這個(gè)常數(shù)是_____cm;

          (2)在B點(diǎn)移動(dòng)的過(guò)程中,點(diǎn)P也隨之移動(dòng),則點(diǎn)P移動(dòng)的總路徑長(zhǎng)為_____cm.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案