日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,設(shè)△ABC和△CDE都是等邊三角形,且∠EBD=62°,則∠AEB的度數(shù)是

          【答案】122°
          【解析】解:∵△ABC和△CDE都是等邊三角形,且∠EBD=62°,

          ∴AC=BC,CE=CD,∠ACB=∠ECD=60°,

          又∵∠ACB=∠ACE+∠BCE,∠ECD=∠BCE+∠BCD,

          ∴∠BCD=∠ACE,△ACE≌△BCD,

          ∴∠DBC=∠CAE,

          ∴62°﹣∠EBC=60°﹣∠BAE,

          ∴62°﹣(60°﹣∠ABE)=60°﹣∠BAE,

          ∴∠AEB=180°﹣(∠ABE+∠BAE)=180°﹣58°=122°.

          所以答案是:122°.

          【考點精析】本題主要考查了等邊三角形的性質(zhì)的相關(guān)知識點,需要掌握等邊三角形的三個角都相等并且每個角都是60°才能正確解答此題.

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在△ABC中,已知點DE、F分別是BC、AD、BE上的中點,且△ABC的面積為8cm2,則△CEF的面積為(

          A.0.5cm2B.1cm2C.2cm2D.4cm2

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知一次函數(shù)y=k1x+b的圖象分別與x軸、y軸的正半軸交于 A,B 兩點,且與反比例函數(shù)y= 交于 C,E 兩點,點 C 在第二象限,過點 C 作CD⊥x軸于點 D,AC=2 ,OA=OB=1.

          (1)△ADC 的面積;
          (2)求反比例函數(shù)y= 與一次函數(shù)的y=k1x+b表達式.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】下列圖形中既是軸對稱圖形又是中心對稱圖形的是( )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,△ABC與△AFD為等腰直角三角形,∠FAD=∠BAC90°,點DBC上,則:

          1)求證:BFDC

          2)若BDAC,則求∠BFD的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在△ABC中,ABCB,∠ABC90°,DAB延長線上一點,點EBC上,且BEBD,連接AE、DEDC.若∠CAE30°,則∠BDC_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】計算:

          1)(a5)(a2)(a+3);

          2)(1x+y)(x1+y);

          3

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】為深化義務(wù)教育課程改革,滿足學生的個性化學習需求,某校就“學生對知識拓展,體育特長、藝術(shù)特長和實踐活動四類選課意向”進行了抽樣調(diào)查(每人選報一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整),請根據(jù)圖中信息,解答下列問題:

          (1)求扇形統(tǒng)計圖中m的值,并補全條形統(tǒng)計圖;
          (2)在被調(diào)查的學生中,隨機抽一人,抽到選“體育特長類”或“藝術(shù)特長類”的學生的概率是多少?
          (3)已知該校有800名學生,計劃開設(shè)“實踐活動類”課程每班安排20人,問學校開設(shè)多少個“實踐活動類”課程的班級比較合理?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在ABCD中,∠ABD的平分線BE交AD于點E,∠CDB的平分線DF交BC于點F,連接BD.

          (1)求證:△ABE≌△CDF;
          (2)若AB=DB,求證:四邊形DFBE是矩形.

          查看答案和解析>>

          同步練習冊答案