日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過A點(diǎn)作BC的平行線交CE的延長線于F,且AF=BD,連接BF.
          (1)求證:D是BC的中點(diǎn).
          (2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

          【答案】
          (1)證明:∵AF∥BC,

          ∴∠AFE=∠DCE

          ∵E是AD的中點(diǎn),

          ∴AE=DE.

          ∵∠AEF=∠DEC,

          ∴△AEF≌△DEC.

          ∴AF=DC,

          ∵AF=BD

          ∴BD=CD,

          ∴D是BC的中點(diǎn)


          (2)四邊形AFBD是矩形,

          證明:∵AB=AC,D是BC的中點(diǎn),

          ∴AD⊥BC,

          ∴∠ADB=90°,

          ∵AF=BD,AF∥BC,

          ∴四邊形AFBD是平行四邊形,

          ∴四邊形AFBD是矩形


          【解析】(1)因?yàn)锳F∥BC,E為AD的中點(diǎn),即可根據(jù)AAS證明△AEF≌△DEC,故有BD=DC;(2)可根據(jù)有一個角是直角的平行四邊形是矩形進(jìn)行判定.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解矩形的判定方法的相關(guān)知識,掌握有一個角是直角的平行四邊形叫做矩形;有三個角是直角的四邊形是矩形;兩條對角線相等的平行四邊形是矩形.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個頂點(diǎn)A(﹣3,4)、B(﹣3,0)、C(﹣1,0).以D為頂點(diǎn)的拋物線y=ax2+bx+c過點(diǎn)B.動點(diǎn)P從點(diǎn)D出發(fā),沿DC邊向點(diǎn)C運(yùn)動,同時動點(diǎn)Q從點(diǎn)B出發(fā),沿BA邊向點(diǎn)A運(yùn)動,點(diǎn)P、Q運(yùn)動的速度均為每秒1個單位,運(yùn)動的時間為t秒.過點(diǎn)P作PE⊥CD交BD于點(diǎn)E,過點(diǎn)E作EF⊥AD于點(diǎn)F,交拋物線于點(diǎn)G.

          (1)求拋物線的解析式;
          (2)當(dāng)t為何值時,四邊形BDGQ的面積最大?最大值為多少?
          (3)動點(diǎn)P、Q運(yùn)動過程中,在矩形ABCD內(nèi)(包括其邊界)是否存在點(diǎn)H,使以B,Q,E,H為頂點(diǎn)的四邊形是菱形,若存在,請直接寫出此時菱形的周長;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】準(zhǔn)備一張矩形紙片,按如圖操作: 將△ABE沿BE翻折,使點(diǎn)A落在對角線BD上的M點(diǎn),將△CDF沿DF翻折,使點(diǎn)C落在對角線BD上的N點(diǎn).

          (1)求證:四邊形BFDE是平行四邊形;
          (2)若四邊形BFDE是菱形,AB=2,求菱形BFDE的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計(jì)算:(﹣ 1﹣| ﹣1|+2sin60°+(π﹣4)0

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(﹣8,0),點(diǎn)B的坐標(biāo)為(﹣8,6),直線BC∥x軸,交y軸于點(diǎn)C,將四邊形OABC繞點(diǎn)O按順時針方向旋轉(zhuǎn)α度得到四邊形OA′B′C′,此時直線OA′、直線B′C′分別與直線BC相交于點(diǎn)P、Q.

          (1)四邊形OABC的形狀是 , 當(dāng)α=90°時, 的值是
          (2)①如圖2,當(dāng)四邊形OA′B′C′的頂點(diǎn)B′落在y軸正半軸上時,求 的值;
          ②如圖3,當(dāng)四邊形OA′B′C′的頂點(diǎn)B′落在BC的延長線上時,求△OPB′的面積.

          (3)在四邊形OABC旋轉(zhuǎn)過程中,當(dāng)0°<α≤180°時,是否存在這樣的點(diǎn)P和點(diǎn)Q,使BP= BQ?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖(1),拋物線 y=﹣ x2平移后過點(diǎn)A(8,0)和原點(diǎn),頂點(diǎn)為B,對稱軸與x軸相交于點(diǎn)C,與原拋物線相交于點(diǎn)D.

          (1)求平移后拋物線的解析式及點(diǎn)D的坐標(biāo);
          (2)直接寫出陰影部分的面積 S陰影;
          (3)如圖(2),直線AB與y軸相交于點(diǎn)P,點(diǎn)M為線段OA上一動點(diǎn)(點(diǎn)M不與點(diǎn)A,O重合 ),∠PMN為直角,MN與AP相交于點(diǎn)N,設(shè)OM=t,試探究:t為何值時,△MAN為等腰三角形?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,AB=AC,分別以B、C為圓心,BC長為半徑在BC下方畫弧.設(shè)兩弧交于點(diǎn)D,與AB、AC的延長線分別交于點(diǎn)E、F,連接AD、BD、CD

          (1)求證:AD平分∠BAC。
          (2)若BC=6,∠BAC=50°,求弧DE、弧DF的長度之和。(結(jié)果保留π)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某網(wǎng)店打出促銷廣告:最潮新款服裝30件,每件售價300元.若一次性購買不超過10件時,售價不變;若一次性購買超過10件時,每多買1件,所買的每件服裝的售價均降低3元.已知該服裝成本是每件200元,設(shè)顧客一次性購買服裝x件時,該網(wǎng)店從中獲利y元.
          (1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍。
          (2)顧客一次性購買多少件時,該網(wǎng)店從中獲利最多?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=a(x﹣1)2+4與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,且點(diǎn)B的坐標(biāo)為(3,0),點(diǎn)P在這條拋物線上,且不與B、C兩點(diǎn)重合.過點(diǎn)P作y軸的垂線與射線BC交于點(diǎn)Q,以PQ為邊作Rt△PQF,使∠PQF=90°,點(diǎn)F在點(diǎn)Q的下方,且QF=1.設(shè)線段PQ的長度為d,點(diǎn)P的橫坐標(biāo)為m.

          (1)求這條拋物線所對應(yīng)的函數(shù)表達(dá)式.
          (2)求d與m之間的函數(shù)關(guān)系式.
          (3)當(dāng)Rt△PQF的邊PF被y軸平分時,求d的值.
          (4)以O(shè)B為邊作等腰直角三角形OBD,當(dāng)0<m<3時,直接寫出點(diǎn)F落在△OBD的邊上時m的值.

          查看答案和解析>>

          同步練習(xí)冊答案