日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,拋物線y=x2-2x-3與x軸交A、B兩點(A點在B點左側(cè)),直線l與拋物線交于A、C兩點,其中C點的橫坐標(biāo)為2.
          (1)求A、B兩點的坐標(biāo)及直線AC的函數(shù)表達(dá)式;
          (2)P是線段AC上的一個動點,過P點作y軸的平行線交拋物線于E點,求線段PE長度的最大值;
          (3)點G拋物線上的動點,在x軸上是否存在點F,使A、C、F、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標(biāo);如果不存在,請說明理由.
          (1)令y=0,解得x1=-1或x2=3
          ∴A(-1,0)B(3,0)
          將C點的橫坐標(biāo)x=2代入y=x2-2x-3得y=-3
          ∴C(2,-3)
          ∴直線AC的函數(shù)解析式是y=-x-1;

          (2)設(shè)P點的橫坐標(biāo)為x(-1≤x≤2)
          則P、E的坐標(biāo)分別為:P(x,-x-1)
          E(x,x2-2x-3)
          ∵P點在E點的上方,PE=(-x-1)-(x2-2x-3)=-x2+x+2=-(x-
          1
          2
          2+
          9
          4
          ,
          ∴當(dāng)x=
          1
          2
          時,PE的最大值=
          9
          4
          ;

          (3)存在4個這樣的點F,分別是F1(1,0),F(xiàn)2(-3,0),F(xiàn)3(4+
          7
          ,0),F(xiàn)4(4-
          7
          ,0).

          ①如圖,連接C與拋物線和y軸的交點,那么CGx軸,此時AF=CG=2,因此F點的坐標(biāo)是(-3,0);

          ②如圖,AF=CG=2,A點的坐標(biāo)為(-1,0),因此F點的坐標(biāo)為(1,0);

          ③如圖,此時C,G兩點的縱坐標(biāo)關(guān)于x軸對稱,因此G點的縱坐標(biāo)為3,代入拋物線中即可得出G點的坐標(biāo)為(1+
          7
          ,3),由于直線GF的斜率與直線AC的相同,因此可設(shè)直線GF的解析式為y=-x+h,將G點代入后可得出直線的解析式為y=-x+4+
          7
          .因此直線GF與x軸的交點F的坐標(biāo)為(4+
          7
          ,0);

          ④如圖,同③可求出F的坐標(biāo)為(4-
          7
          ,0).
          綜合四種情況可得出,存在4個符合條件的F點.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線y=-
          1
          2
          x2+bx+4上有不同的兩點E(k+3,0)和F(-k-1,0).
          (1)求拋物線的解析式.
          (2)如圖,拋物線y=-
          1
          2
          x2+bx+4與x軸和y軸的正半軸分別交于點A和B,M為AB的中點,∠PMQ在AB的同側(cè)以M為中心旋轉(zhuǎn),且∠PMQ=45°,MP交y軸于點C,MQ交x軸于點D.設(shè)AD的長為m(m>0),BC的長為n,求n和m之間的函數(shù)關(guān)系式.
          (3)當(dāng)k>0且∠PMQ的邊過點F時,求m、n的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知拋物線y=ax2+bx+c的頂點為P(1,-2),且經(jīng)過點A(-3,6),并與x軸交于點B和C.

          (1)求這個二次函數(shù)的解析式,并求出點C坐標(biāo)及∠ACB的大。
          (2)設(shè)D為線段OC上一點,滿足∠DPC=∠BAC,求D的坐標(biāo);
          (3)在x軸上,是否存在點M,使得以M為圓心的圓能與直線AC、直線PC及y軸都相切?如果存在,求出點M的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          已知拋物線的頂點是(-1,-2),且過點(1,10).求此拋物線對應(yīng)的二次函數(shù)關(guān)系式______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          正方形ABCD的邊長為2,E是射線CD上的動點(不與點D重合),直線AE交直線BC于點G,∠BAE的平分線交射線BC于點O.
          (1)如圖,當(dāng)CE=
          2
          3
          時,求線段BG的長;
          (2)當(dāng)點O在線段BC上時,設(shè)
          CE
          ED
          =x
          ,BO=y,求y關(guān)于x的函數(shù)解析式;
          (3)當(dāng)CE=2ED時,求線段BO的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,兩條鋼纜具有相同的拋物線形狀.按照圖中的直角坐標(biāo)系,左面的一條拋物線可以用y=0.0225x2+0.9x+10表示,而且左右兩條拋物線關(guān)于y軸對稱.
          (1)鋼纜的最低點到橋面的距離是______m;
          (2)兩條鋼纜最低點之間的距離是______m;
          (3)右邊的拋物線解析式是______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          某商店經(jīng)銷一種銷售成本為每千克40元的水產(chǎn)品,據(jù)市場分析,若每千克50元銷售,一個月能售出500kg,銷售單價每漲1元,月銷售量就減少10kg,針對這種水產(chǎn)品情況,請解答以下問題:
          (1)當(dāng)銷售單價定為每千克55元時,計算銷售量和月銷售利潤;
          (2)設(shè)銷售單價為每千克x元,月銷售利潤為y元,求y與x的關(guān)系式;
          (3)商品想在月銷售成本不超過10000元的情況下,使得月銷售利潤達(dá)到8000元,銷售單價應(yīng)為多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          若f(x)>0,符號
          ba
          f(x)dx
          表示函數(shù)y=f(x)的圖象與過點(a,0),(b,0)且和x軸垂直的直線及x軸圍成圖形的面積.如圖,
          21
          (x+1)dx
          表示梯形ABCD的面積.設(shè)A=
          21
          2
          x
          dx
          ,B=
          21
          (-x+3)dx
          C=
          21
          (-
          3
          2
          x2+
          7
          2
          x)dx
          ,則A,B,C中最大的是(  )
          A.AB.BC.CD.無法比較

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          (1)在Rt△ABC中,BC=3,AB=4,則AC=______.
          (2)如圖,在Rt△ABC中,∠ABC=90°,BC=3cm,AB=4cm.若點P從點B出發(fā),以2cm/s的速度在BC所在的直線上運(yùn)動.設(shè)點P的運(yùn)動時間為t,試求當(dāng)t為何值時,△ACP是等腰三角形?

          查看答案和解析>>

          同步練習(xí)冊答案