日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知M是△ABC的邊AB的中點(diǎn),DMC的延長(zhǎng)線上一點(diǎn),滿足∠ACM=BDM

          (1)求證:AC=BD;

          (2)若∠BMC=60°,求的值.

          【答案】(1)證明見解析(2)2

          【解析】

          1)證明:延長(zhǎng)CMF,使MF=CM,連接AF、BF,根據(jù)對(duì)角線互相平分的四邊形是平行四邊形得到四邊形AFBC是平行四邊形,根據(jù)平行四邊形的性質(zhì)得到∠BFM=ACM,等量代換得到∠BFM=BDM,即可證明BD=BF=AC;

          (2) 延長(zhǎng)CM至點(diǎn)E,使EM=CD,連結(jié)AE,證明ACE≌△BDM,根據(jù)全等三角形的性質(zhì)得到AE=BM=AM,又∠BMC=60° ,證明AEM是等邊三角形,得到AB=2AM=2ME=2CD,即可求解.

          1)證明:延長(zhǎng)CMF,使MF=CM,連接AFBF

          ∵四邊形AFBC中對(duì)角線CF、AB互相平分

          ∴四邊形AFBC是平行四邊形

          ∴∠BFM=ACM,

          ∵∠ACM=BDM

          ∴∠BFM=BDM,

          BD=BF=AC

          2)解:延長(zhǎng)CM至點(diǎn)E,使EM=CD,連結(jié)AE

          ∴在ACEBDM

          ∴△ACE≌△BDM

          AE=BM=AM

          又∠BMC=60°

          ∴∠AME=60°

          ∴△AEM是等邊三角形

          AB=2AM=2ME=2CD

          .

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】閱讀材料:各類方程的解法

          求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式。求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來(lái)解:求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解。求解分式方程,把它轉(zhuǎn)化為整式方程來(lái)解。各類方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想--轉(zhuǎn)化,把未知轉(zhuǎn)化為已知。

          轉(zhuǎn)化的數(shù)學(xué)思想,我們還可以解一些新的方程。例如,一元三次方程,可以通過因式分解把它轉(zhuǎn)化為,解方程,可得方程的解。

          1)問題:方程的解是,_____,_____

          2)拓展:用轉(zhuǎn)化思想求方程的解。

          3)應(yīng)用:如圖,已知矩形草坪ABCD的長(zhǎng),寬,小華把一根長(zhǎng)為10m的繩子的一端固定在點(diǎn)B,沿草坪邊沿BA,AD走到點(diǎn)P處,把長(zhǎng)繩PB段拉直并固定在點(diǎn)P,然后沿草坪邊沿PD、DC走到點(diǎn)C處,把長(zhǎng)繩剩下的一段拉直,長(zhǎng)繩的另一端恰好落在點(diǎn)C。求AP的長(zhǎng)。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A4,0)、B-6,0),點(diǎn)Cy軸上的一個(gè)動(dòng)點(diǎn),當(dāng)∠BCA=45°時(shí),點(diǎn)C的坐標(biāo)為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】ABC,C=60°,點(diǎn)D,E分別是邊AC,BC上的點(diǎn),點(diǎn)P是直線AB上一動(dòng)點(diǎn),連接PD,PE,設(shè)∠DPE=α.

          (1)如圖①所示,如果點(diǎn)P在線段BA,α=30°,那么∠PEB+PDA=___;

          (2)如圖②所示,如果點(diǎn)P在線段BA上運(yùn)動(dòng),

          ①依據(jù)題意補(bǔ)全圖形;

          ②寫出∠PEB+PDA的大小(用含α的式子表示);并說(shuō)明理由。

          (3)如果點(diǎn)P在線段BA的延長(zhǎng)線上運(yùn)動(dòng),直接寫出∠PEB與∠PDA之間的數(shù)量關(guān)系(用含α的式子表示).那么∠PEB與∠PDA之間的數(shù)量關(guān)系是___.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某商場(chǎng)在春節(jié)期間搞優(yōu)惠促銷活動(dòng),商場(chǎng)將29英寸和25英寸彩電共96臺(tái)分別以8折和7折出售,共得168400元。已知29英寸彩電原價(jià)為3000/臺(tái),25英寸彩電原價(jià)為2000/臺(tái),出售29英寸和25英寸彩電各多少臺(tái)?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過點(diǎn)A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(m,-2).

          (1)求△AHO的周長(zhǎng);

          (2)求該反比例函數(shù)和一次函數(shù)的解析式.

          【答案】(1)△AHO的周長(zhǎng)為12(2) 反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=-x+1.

          【解析】試題分析: 1)根據(jù)正切函數(shù),可得AH的長(zhǎng),根據(jù)勾股定理,可得AO的長(zhǎng),根據(jù)三角形的周長(zhǎng),可得答案;

          2)根據(jù)待定系數(shù)法,可得函數(shù)解析式.

          試題解析:(1)由OH=3,tan∠AOH=,得

          AH=4.即A-4,3).

          由勾股定理,得

          AO==5,

          △AHO的周長(zhǎng)=AO+AH+OH=3+4+5=12;

          2)將A點(diǎn)坐標(biāo)代入y=k≠0),得

          k=-4×3=-12

          反比例函數(shù)的解析式為y=;

          當(dāng)y=-2時(shí),-2=,解得x=6,即B6,-2).

          A、B點(diǎn)坐標(biāo)代入y=ax+b,得

          ,

          解得,

          一次函數(shù)的解析式為y=-x+1

          考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.

          型】解答
          結(jié)束】
          21

          【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC,過點(diǎn)C作CE⊥DB交DB的延長(zhǎng)線于點(diǎn)E,直線AB與CE相交于點(diǎn)F.

          (1)求證:CF為⊙O的切線;

          (2)填空:當(dāng)∠CAB的度數(shù)為________時(shí),四邊形ACFD是菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】RtABC中,∠BAC=90°,AB=3,AC=4,P為邊BC上一動(dòng)點(diǎn),PEABE,PFACF,MEF中點(diǎn),則AM的最小值為______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】1)操作發(fā)現(xiàn):

          如圖,在矩形ABCD中,E是BC的中點(diǎn),將△ABE沿AE折疊后得到△AFE,點(diǎn)F在矩形ABCD內(nèi)部,延長(zhǎng)AF交CD于點(diǎn)G.猜想線段GF與GC有何數(shù)量關(guān)系?并證明你的結(jié)論.

          (2)類比探究:

          如圖,將(1)中的矩形ABCD改為平行四邊形,其它條件不變,(1)中的結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,ABC的邊BC在x軸上,頂點(diǎn)A在y軸的正半軸上,OA=2,OB=1,OC=4.

          (1)求過A、B、C三點(diǎn)的拋物線的解析式;

          (2)設(shè)點(diǎn)M是x軸上的動(dòng)點(diǎn),試問:在平面直角坐標(biāo)系中,是否存在點(diǎn)N,使得以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)N的坐標(biāo);若不存在,說(shuō)明理由;

          (3)若拋物線對(duì)稱軸交x軸于點(diǎn)P,在平面直角坐標(biāo)系中,是否存在點(diǎn)Q,使PAQ是以PA為腰的等腰直角三角形?若存在,寫出所有符合條件的點(diǎn)Q的坐標(biāo),選擇一種情況加以說(shuō)明;若不存在,說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案