日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】問題背景(1)如圖1△ABC中,DE∥BC分別交ABACD,E兩點(diǎn),過點(diǎn)EEF∥ABBC于點(diǎn)F.請(qǐng)按圖示數(shù)據(jù)填空:△EFC的面積__________,△ADE的面積______________

          探究發(fā)現(xiàn)(2)在(1)中,若BF=m,FC=n,DEBC間的距離為.請(qǐng)證明

          拓展遷移(3)如圖2□DEFG的四個(gè)頂點(diǎn)在△ABC的三邊上,若△ADG、△DBE△GFC的面積分別為3、7、5,試?yán)茫?/span>2)中的結(jié)論求△ABC的面積.

          【答案】1,2318

          【解析】試題(1△EFC的面積利用底×高的一半計(jì)算;△ADE的面積,可以先過點(diǎn)AAH⊥BC,交DEG,交BCH,即AG△ADE的高,AH△ABC的高,利用平行線分線段成比例定理的推論,可知△ADE∽△ABC,利用相似三角形的性質(zhì)可求AG,再利用三角形的面積公式計(jì)算即可;

          2)由于DE∥BCEF∥AB,可知四邊形DBFE是平行四邊形,同時(shí),利用平行線分線段成比例定理的推論,可知△ADE∽△ABC,△EFC∽△ABC,從而易得△ADE∽△EFC,利用相似三角形的面積比等于相似比的平方,可得S1S2=n2m2,由于S1=nh,那么可求S2,從而易求4S1S2,又S=mh,容易證出結(jié)論;

          3)過點(diǎn)GGH∥ABBCH,則四邊形DBHG為平行四邊形,容易證出△DBE≌△GHF,那么△GHC的面積等于8,再利用(2)中的結(jié)論,可求DBHG的面積,從而可求△ABC的面積.

          試題解析:(1S1=×6×3=9

          AAH⊥BC,交DEG,

          ∵DE∥BC,EF∥AB

          四邊形DEFB是平行四邊形,

          ∴DE=BF=2,

          ∵DE∥BC,

          ∴AG⊥DE,△ADE∽△ABC,

          ,

          解得:AG=1,

          ∴S2=×DE×AG==1,

          2∵DE∥BC,EF∥AB,

          四邊形DBFE為平行四邊形,∠AED=∠C,∠A=∠CEF,

          ∴△ADE∽△EFC,

          ,

          ∵S1=nh,

          ∴S2=×S1=,

          ∴4S1S2=4×nh×=mh2,

          S=mh,

          ∴S2=4S1S2

          3)過點(diǎn)GH∥ABBCH,則四邊形DBHG為平行四邊形,

          ∴∠GHC=∠B,BD=HG,DG=BH

          四邊形DEFG為平行四邊形,∴DG=EF,

          ∴BH=EF,

          ∴BE=HF,

          △DBE△GHF

          ∴△DBE≌△GHFSAS),

          ∴△GHC的面積為7+5=12,

          由(2)得,平行四邊形DBHG的面積S=12

          ∴△ABC的面積為3+12+12=27

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,二次函數(shù)yax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(12),且與x軸交點(diǎn)的橫坐標(biāo)分別為x1x2,其中﹣2x1<﹣1,0x21,下列結(jié)論:①4a2b+c0;②2ab0;③a0;④b2+8a4ac,其中正確的有( )

          A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(提出問題)如圖1,小東將一張AD12,寬AB4的長(zhǎng)方形紙片按如下方式進(jìn)行折疊:在紙片的一邊BC上分別取點(diǎn)P、Q,使得BP=CQ,連結(jié)AP、DQ,將△ABP、△DCQ分別沿APDQ折疊得△APM,△DQN,連結(jié)MN.小東發(fā)現(xiàn)線段MN的位置和長(zhǎng)度隨著點(diǎn)PQ的位置發(fā)生改變.

          (規(guī)律探索)

          1)請(qǐng)?jiān)趫D1中過點(diǎn)M,N分別畫ME⊥BC于點(diǎn)E,NF⊥BC于點(diǎn)F

          求證:①M(fèi)E=NF;②MN∥BC

          (解決問題)

          2)如圖1,若BP=3,求線段MN的長(zhǎng);

          3)如圖2,當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),求MN的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校為了開闊學(xué)生的視野,積極組織學(xué)生參加課外讀書活動(dòng).放飛夢(mèng)想讀書小組協(xié)助老師隨機(jī)抽取本校的部分學(xué)生,調(diào)查他們最喜愛的圖書類別(圖書分為文學(xué)類、藝體類、科普類、其他等四類),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中的信息解答下列問題:

          1)求被調(diào)查的學(xué)生人數(shù);

          2)補(bǔ)全條形統(tǒng)計(jì)圖;

          3)已知該校有1200名學(xué)生,估計(jì)全校最喜愛文學(xué)類圖書的學(xué)生有多少人?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,在□ABCD中,線段EF分別交AD、AC、BC于點(diǎn)E、OF,EF⊥AC,AO=CO

          1)求證:△AOE≌△COF;

          2)在本題的已知條件中,有一個(gè)條件如果去掉,并不影響(1)的證明,你認(rèn)為這個(gè)多余的條件是 (直接寫出這個(gè)條件).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校計(jì)劃組織學(xué)生到市影劇院觀看大型感恩歌舞劇,為了解學(xué)生如何去影劇院的問題,學(xué)校隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果制成了表格、條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(均不完整).

          1)此次共調(diào)查了多少位學(xué)生?

          2)將表格填充完整;

          步行

          騎自行車

          坐公共汽車

          其他

          50

          3)將條形統(tǒng)計(jì)圖補(bǔ)充完整.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形ABCD中,EBC上一點(diǎn),且AEBC,DFAE,垂足是F,連接DE

          求證:(1DFAB;

          2DE是∠FDC的平分線.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】中,,,過點(diǎn)作直線,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到(點(diǎn),的對(duì)應(yīng)點(diǎn)分別為),射線,分別交直線于點(diǎn),

          1)如圖1,當(dāng)重合時(shí),求的度數(shù);

          2)如圖2,設(shè)的交點(diǎn)為,當(dāng)的中點(diǎn)時(shí),求線段的長(zhǎng);

          3)在旋轉(zhuǎn)過程中,當(dāng)點(diǎn),分別在,的延長(zhǎng)線上時(shí),試探究四邊形的面積是否存在最小值.若存在,求出四邊形的最小面積;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB是O的直徑,AC平分DAB交O于點(diǎn)C,過點(diǎn)C的直線垂直于AD交AB的延長(zhǎng)線于點(diǎn)P,弦CE交AB于點(diǎn)F,連接BE.

          (1)求證:PD是O的切線;

          (2)若PC=PF,試證明CE平分∠ACB.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案