日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)A,0)和點(diǎn)B1),與x軸的另一個(gè)交點(diǎn)為C

          1)求拋物線的函數(shù)表達(dá)式;

          2)點(diǎn)D在對(duì)稱軸的右側(cè),x軸上方的拋物線上,且∠BDA=∠DAC,求點(diǎn)D的坐標(biāo);

          3)在(2)的條件下,連接BD,交拋物線對(duì)稱軸于點(diǎn)E,連接AE

          判斷四邊形OAEB的形狀,并說(shuō)明理由;

          點(diǎn)FOB的中點(diǎn),點(diǎn)M是直線BD的一個(gè)動(dòng)點(diǎn),且點(diǎn)M與點(diǎn)B不重合,當(dāng)∠BMF=∠MFO時(shí),請(qǐng)直接寫(xiě)出線段BM的長(zhǎng).

          【答案】1.(2D4).(3)①四邊形OAEB是平行四邊形.理由如見(jiàn)解析;②線段BM的長(zhǎng)為

          【解析】

          1)將A,0)和B1,)代入拋物線解析式,得:

          ,解得:,

          解析式為:

          2)當(dāng)∠BDA=DAC時(shí),BDx軸,

          B1),當(dāng)y=時(shí),,

          解得:x=1x=4,

          D4,),

          3)①四邊形OAEB是平行四邊形

          理由如下:拋物線的對(duì)稱軸是,

          BE=-1=,

          A,0

          OA-BE=

          BEOA

          ∴四邊形OAEB是平行四邊形

          ②∵O0,0),B1,),FOB的中點(diǎn),

          F).

          過(guò)點(diǎn)FFN⊥直線BD于點(diǎn)N,則FN==,BN=1=

          RtBNF中,由勾股定理得:

          ∵∠BMF=MFO,∠MFO=FBM+BMF,

          ∴∠FBM=2BMF

          I)當(dāng)點(diǎn)M位于點(diǎn)B右側(cè)時(shí).

          在直線BD上點(diǎn)B左側(cè)取一點(diǎn)G,使BG=BF=,連接FG,則GN=BGBN=1,

          RtFNG中,由勾股定理得:

          BG=BF,

          ∴∠BGF=BFG

          又∵∠FBM=BGF+BFG=2BMF,

          ∴∠BFG=BMF

          又∵∠MGF=MGF,

          ∴△GFB∽△GMF

          ,即

          BM=

          II)當(dāng)點(diǎn)M位于點(diǎn)B左側(cè)時(shí),

          設(shè)BDy軸交于點(diǎn)K,連接FK,則FKRtKOB斜邊上的中線,

          KF=OB=FB=

          ∴∠FKB=FBM=2BMF

          又∵∠FKB=BMF+MFK,

          ∴∠BMF=MFK.∴MK=KF=

          BM=MK+BK=+1=

          綜上所述,線段BM的長(zhǎng)為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,直角三角形的直角頂點(diǎn)在矩形的對(duì)角線上(點(diǎn)不與點(diǎn)重合,可與點(diǎn)重合),滿足,于點(diǎn),已知,

          1)若,則___________;

          2)當(dāng)點(diǎn)的平分線上時(shí),求的長(zhǎng);

          3)當(dāng)點(diǎn)的位置發(fā)生改變時(shí):

          ①如圖2,的外接圓是否與一直保持相切.說(shuō)明理由;

          ②直接寫(xiě)出的外接圓與相切時(shí)的長(zhǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,ABC中,BAC=90°,AB=AC,ADBC,垂足是D,AE平分BAD,交BC于點(diǎn)E.在ABC外有一點(diǎn)F,使FAAE,F(xiàn)CBC.

          (1)求證:BE=CF;

          (2)在AB上取一點(diǎn)M,使BM=2DE,連接MC,交AD于點(diǎn)N,連接ME.求證:MEBC;DE=DN.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】1)解不等式5x+2≥3x1),并把它的解集在數(shù)軸上表示出來(lái).

          2)寫(xiě)出一個(gè)實(shí)數(shù)k,使得不等式xk和(1)中的不等式組成的不等式組恰有3個(gè)整數(shù)解.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)EF分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個(gè)結(jié)論:HE=HF;EC平分DCH線段BF的取值范圍為3≤BF≤4;當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EF=2.以上結(jié)論中,你認(rèn)為正確的有( 。﹤(gè).

          A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在中,,,,點(diǎn)為射線上一動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合).

          1為何值時(shí),最短,求出此時(shí)的最小值;

          2為何值時(shí),,說(shuō)明理由;

          3)當(dāng)的一個(gè)頂點(diǎn)與其內(nèi)心、外心在同一條直線時(shí),直接寫(xiě)出的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某中學(xué)疫情期間為了切實(shí)抓好停課不停學(xué)活動(dòng),借助某軟件平臺(tái)隨機(jī)抽取了該校部分學(xué)生的在線學(xué)習(xí)時(shí)間,并將結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

          請(qǐng)你根據(jù)以上信息回答下列問(wèn)題

          1)本次調(diào)查的人數(shù)為   學(xué)習(xí)時(shí)間為7小時(shí)的所對(duì)的圓心角為 ;

          2)補(bǔ)全頻數(shù)分布直方圖;

          3)若全校共有學(xué)生1800人,估計(jì)有多少學(xué)生在線學(xué)習(xí)時(shí)間不低于8個(gè)小時(shí).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】學(xué)校擬購(gòu)進(jìn)一批手動(dòng)噴淋消毒設(shè)備,已知1個(gè)A型噴霧器和2個(gè)B型噴霧器共需90元;2個(gè)A型噴霧器和3個(gè)B型噴霧器共需165元.

          1)問(wèn)一個(gè)A型噴霧器和一個(gè)B型噴霧器的單價(jià)各是多少元?

          2)學(xué)校決定購(gòu)進(jìn)兩種型號(hào)的噴霧器共60個(gè),并且要求B型噴霧器的數(shù)量不能多于A型噴霧器的4倍,請(qǐng)你設(shè)計(jì)出最為省錢(qián)的購(gòu)買(mǎi)方案,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,AD是∠BAC的平分線,DE平行ABAC于點(diǎn)EDF平行ACAB于點(diǎn)F,延長(zhǎng)FEBC的延長(zhǎng)線于點(diǎn)G

          求證:

          1AGDG;

          2)∠GAC=∠B

          查看答案和解析>>

          同步練習(xí)冊(cè)答案