日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖在直角中,,點(diǎn)中點(diǎn),連接,點(diǎn)的中點(diǎn),過點(diǎn)交線段的延長(zhǎng)線于點(diǎn),連接.

          1)求證:四邊形是菱形;

          2)在不添加任何輔助線的情況下,請(qǐng)直接寫出與面積相等三角形(不包含

          【答案】(1)見解析;(2)、、

          【解析】

          1)由EAD的中點(diǎn),AFBC,易證得AFE≌△DBE,即可得AF=BD,又由在RtABC中,∠BAC=90°,DBC的中點(diǎn),可得AD=BD=CD=AF,證得四邊形ADCF是平行四邊形,繼而判定四邊形ADCF是菱形;
          2)根據(jù)等高模型即可解決問題;

          1)∵,∴,∵中點(diǎn),

          ,,

          ,

          ,∵的斜邊中線,∴,

          ,又∵,

          ∴四邊形為平行四邊形.

          ,

          ∴四邊形為菱形.

          2)根據(jù)等底等高的三角形面積想等,可判斷出與面積相等三角形有:、、.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知PAPB切⊙OA、B兩點(diǎn),CD切⊙OE,PCD的周長(zhǎng)為20,sinAPB,則⊙O的半徑( )

          A. 4B. 5C. 6D. 7

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1是某品牌的一款學(xué)生斜持包,其挎帶由單層部分、雙層部分和調(diào)節(jié)扣組成.設(shè)單層部分的長(zhǎng)度為xcm,雙層部分的長(zhǎng)度為ycm,經(jīng)測(cè)景,得到如下數(shù)據(jù):

          xcm

          0

          4

          6

          8

          10

          120

          ycm

          M

          58

          57

          56

          55

          n

          (1)如圖2,在平面直角坐標(biāo)系中,以所測(cè)得數(shù)據(jù)中的x為橫坐標(biāo),以y為縱坐標(biāo),描出所表示的點(diǎn),并用平滑曲線連接,并根據(jù)圖象猜想求出該函數(shù)的解析式;

          (2)若小花要購(gòu)買一個(gè)持帶長(zhǎng)為125cm的斜挎包,該款式的斜挎包是否滿足小花的需求?請(qǐng)說明理由,(挎帶的總長(zhǎng)度=單層部分長(zhǎng)度+雙層部分長(zhǎng)度,其中調(diào)節(jié)扣的長(zhǎng)度忽略不計(jì))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】閱讀材料:

          對(duì)于線段的垂直平分線我們有如下結(jié)論:到線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在線段的垂直平分線上.即如圖,若PAPB,則點(diǎn)P在線段AB的垂直平分線上.

          請(qǐng)根據(jù)閱讀材料,解決下列問題:

          如圖,直線CD是等邊ABC的對(duì)稱軸,點(diǎn)DAB上,點(diǎn)E是線段CD上的一動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)CD重合),連結(jié)AEBE,ABE經(jīng)順時(shí)針旋轉(zhuǎn)后與BCF重合.

          1)旋轉(zhuǎn)中心是點(diǎn)   ,旋轉(zhuǎn)了   (度);

          2)當(dāng)點(diǎn)E從點(diǎn)D向點(diǎn)C移動(dòng)時(shí),連結(jié)AF,設(shè)AFCD交于點(diǎn)P,在圖中將圖形補(bǔ)全,并探究APC的大小是否保持不變?若不變,請(qǐng)求出APC的度數(shù);若改變,請(qǐng)說出變化情況.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣2x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,﹣2),OB=4OA,tan∠BCO=2.

          (1)求A、B兩點(diǎn)的坐標(biāo);

          (2)求拋物線的解析式;

          (3)點(diǎn)M、N分別是線段BC、AB上的動(dòng)點(diǎn),點(diǎn)M從點(diǎn)B出發(fā)以每秒個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)N從點(diǎn)A出發(fā)以每秒2個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)M、N中的一點(diǎn)到達(dá)終點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過點(diǎn)MMP⊥x軸于點(diǎn)E,交拋物線于點(diǎn)P.設(shè)點(diǎn)M、點(diǎn)N的運(yùn)動(dòng)時(shí)間為t(s),當(dāng)t為多少時(shí),△PNE是等腰三角形?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,直線ly=x-x軸交于點(diǎn)B1,以OB1為邊長(zhǎng)作等邊三角形A1OB1,過點(diǎn)A1A1B2平行于x軸,交直線l于點(diǎn)B2,以A1B2為邊長(zhǎng)作等邊三角形A2A1B2,過點(diǎn)A2A2B3平行于x軸,交直線l于點(diǎn)B3,以A2B3為邊長(zhǎng)作等邊三角形A3A2B3,…,按此規(guī)律進(jìn)行下去,則點(diǎn)A3的橫坐標(biāo)為______;點(diǎn)A2018的橫坐標(biāo)為______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,在平面直角坐標(biāo)系xOy中,拋物線Ly=x2-4x+3x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),頂點(diǎn)為C

          1)求點(diǎn)C和點(diǎn)A的坐標(biāo).

          2)定義“L雙拋圖形”:直線x=t將拋物線L分成兩部分,首先去掉其不含頂點(diǎn)的部分,然后作出拋物線剩余部分關(guān)于直線x=t的對(duì)稱圖形,得到的整個(gè)圖形稱為拋物線L關(guān)于直線x=t的“L雙拋圖形”(特別地,當(dāng)直線x=t恰好是拋物線的對(duì)稱軸時(shí),得到的“L雙拋圖形”不變),

          ①當(dāng)t=0時(shí),拋物線L關(guān)于直找x=0的“L雙拋圖形”如圖所示,直線y=3與“L雙拋圖形”有______個(gè)交點(diǎn);

          ②若拋物線L關(guān)于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個(gè)交點(diǎn),結(jié)合圖象,直接寫出t的取值范圍:______;

          ③當(dāng)直線x=t經(jīng)過點(diǎn)A時(shí),“L雙拋圖形”如圖所示,現(xiàn)將線段AC所在直線沿水平(x軸)方向左右平移,交“L雙拋圖形”于點(diǎn)P,交x軸于點(diǎn)Q,滿足PQ=AC時(shí),求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,O的直徑AB垂直于弦CD,垂足為點(diǎn)E,過點(diǎn)CO 的切線,交AB的延長(zhǎng)線于點(diǎn)P,聯(lián)結(jié)PD

          1)判斷直線PDO的位置關(guān)系,并加以證明;

          2)聯(lián)結(jié)CO并延長(zhǎng)交O于點(diǎn)F,聯(lián)結(jié)FPCD于點(diǎn)G,如果CF=10,cosAPC=,求EG的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知頂點(diǎn)為的拋物線經(jīng)過點(diǎn),點(diǎn).

          (1)求拋物線的解析式;

          (2)如圖1,直線軸相交于點(diǎn)軸相交于點(diǎn),拋物線與軸相交于點(diǎn),在直線上有一點(diǎn),若,求的面積;

          (3)如圖2,點(diǎn)是折線上一點(diǎn),過點(diǎn)軸,過點(diǎn)軸,直線與直線相交于點(diǎn),連接,將沿翻折得到,若點(diǎn)落在軸上,請(qǐng)直接寫出點(diǎn)的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案