日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BACBC于點(diǎn)D,OAB上一點(diǎn),經(jīng)過點(diǎn)A,D⊙O分別交AB,AC于點(diǎn)E,F(xiàn),連接OFAD于點(diǎn)G.

          (1)求證:BC⊙O的切線;

          (2)設(shè)AB=x,AF=y,試用含x,y的代數(shù)式表示線段AD的長(zhǎng);

          (3)BE=8,sinB=,求DG的長(zhǎng),

          【答案】(1)證明見解析;(2)AD=;(3)DG=

          【解析】

          (1)連接OD,由AD為角平分線得到一對(duì)角相等,再由等邊對(duì)等角得到一對(duì)角相等,等量代換得到內(nèi)錯(cuò)角相等,進(jìn)而得到ODAC平行,得到ODBC垂直,即可得證;
          (2)連接DF,由(1)得到BC為圓O的切線,由弦切角等于夾弧所對(duì)的圓周角,進(jìn)而得到三角形ABD與三角形ADF相似,由相似得比例,即可表示出AD;
          (3)連接EF,設(shè)圓的半徑為r,由sinB的值,利用銳角三角函數(shù)定義求出r的值,由直徑所對(duì)的圓周角為直角,得到EFBC平行,得到sinAEF=sinB,進(jìn)而求出DG的長(zhǎng)即可.

          (1)如圖,連接OD,

          AD為∠BAC的角平分線,

          ∴∠BAD=CAD,

          OA=OD,

          ∴∠ODA=OAD,

          ∴∠ODA=CAD,

          ODAC,

          ∵∠C=90°,

          ∴∠ODC=90°,

          ODBC,

          BC為圓O的切線;

          (2)連接DF,由(1)BC為圓O的切線,

          ∴∠FDC=DAF,

          ∴∠CDA=CFD,

          ∴∠AFD=ADB,

          ∵∠BAD=DAF,

          ∴△ABD∽△ADF,

          ,即AD2=ABAF=xy,

          AD=

          (3)連接EF,在RtBOD中,sinB=

          設(shè)圓的半徑為r,可得

          解得:r=5,

          AE=10,AB=18,

          AE是直徑,

          ∴∠AFE=C=90°,

          EFBC,

          ∴∠AEF=B,

          sinAEF=

          AF=AEsinAEF=10×=,

          AFOD,

          ,即DG=AD,

          AD=,

          DG=

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線軸、軸分別相交于點(diǎn),點(diǎn)的坐標(biāo)為(﹣8,0),點(diǎn)的坐標(biāo)為(﹣6,0),點(diǎn)是第二象限內(nèi)的直線上的一個(gè)動(dòng)點(diǎn),

          1)求k的值;

          2)在點(diǎn)的運(yùn)動(dòng)過程中,寫出的面積的函數(shù)表達(dá)式,并寫出自變量的取值范圍;

          3)探究:當(dāng)運(yùn)動(dòng)到什么位置(求的坐標(biāo))時(shí),的面積為,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一次函數(shù)y1kx+by2x+a的圖象如圖,則下列結(jié)論中①k0;②a0;③當(dāng)x3時(shí),y1y2;④方程組的解是.正確的結(jié)論是_____(填序號(hào))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A1,1),在x軸上確定點(diǎn)P,使AOP為等腰三角形,則符合條件的點(diǎn)P的個(gè)數(shù)共有(

          A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方形網(wǎng)格中(每個(gè)小正方形的邊長(zhǎng)都為1個(gè)單位),在平面直角坐標(biāo)系內(nèi),△OBC的頂點(diǎn)B、C分別為B(0,﹣4),C(2,﹣4).

          (1)請(qǐng)?jiān)趫D中標(biāo)出△OBC的外接圓的圓心P的位置,并填寫:圓心P的坐標(biāo)為 ;

          (2)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△OB1C1;

          (3)(2)的條件下,求出旋轉(zhuǎn)過程中點(diǎn)C所經(jīng)過分路徑長(zhǎng)(結(jié)果保留π).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】【閱讀學(xué)習(xí)】 劉老師提出這樣一個(gè)問題:已知α為銳角,且tanα=,求sin2α的值.

          小娟是這樣解決的:

          如圖1,在⊙O中,AB是直徑,點(diǎn)C⊙O上,∠BAC=α,所以∠ACB=90°,tanα==

          易得∠BOC=2α.設(shè)BC=x,則AC=3x,則AB=x.作CD⊥ABD,求出CD= (用含x的式子表示),可求得sin2α==

          【問題解決】

          已知,如圖2,點(diǎn)M、N、P為圓O上的三點(diǎn),且∠P=β,tanβ =,求sin2β的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】四邊形中,,,,邊上的一點(diǎn),連結(jié),將沿直線對(duì)折得到,點(diǎn)恰好落在線段上,當(dāng)時(shí),的面積為_________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,點(diǎn) A﹣2,0),B2,0),C02,點(diǎn) D,點(diǎn)E分別是 AC,BC的中點(diǎn),將CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到CDE,及旋轉(zhuǎn)角為α,連接 AD,BE

          1如圖,若 α90°,當(dāng) AD′∥CE時(shí),求α的大;

          2如圖,若 90°α180°,當(dāng)點(diǎn) D落在線段 BE上時(shí),求 sin∠CBE的值;

          3若直線AD與直線BE相交于點(diǎn)P,求點(diǎn)P的橫坐標(biāo)m的取值范圍直接寫出結(jié)果即可).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形 ACDE 是證明勾股定理時(shí)用到的一個(gè)圖形,ab 、cRtABCRtBED 的邊長(zhǎng),已知,這時(shí)我們把關(guān)于 x 的形如二次方程稱為勾系一元二次方程

          請(qǐng)解決下列問題:

          (1)寫出一個(gè)勾系一元二次方程;

          (2)求證:關(guān)于 x勾系一元二次方程,必有實(shí)數(shù)根;

          (3)若 x 1勾系一元二次方程的一個(gè)根,且四邊形 ACDE 的周長(zhǎng)是6,求ABC 的面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案