日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線y=x2+bx+c的頂點(diǎn)為P,與y軸交于點(diǎn)A,與直線OP交于點(diǎn)B.
          (1)如圖1,若點(diǎn)P的橫坐標(biāo)為1,點(diǎn)B的坐標(biāo)為(3,6),試確定拋物線的解析式;

          (2)在(1)的條件下,若點(diǎn)M是直線AB下方拋物線上的一點(diǎn),且SABM=3,求點(diǎn)M的坐標(biāo);
          (3)如圖2,若點(diǎn)P在第一象限,且PA=PO,過(guò)點(diǎn)P作PD⊥x軸于點(diǎn)D.將拋物線y=x2+bx+c平移,平移后的拋物線經(jīng)過(guò)點(diǎn)A、D,該拋物線與x軸的另一個(gè)交點(diǎn)為C,請(qǐng)?zhí)骄克倪呅蜲ABC的形狀,并說(shuō)明理由.

          【答案】
          (1)

          解:依題意, ,

          解得b=﹣2.

          將b=﹣2及點(diǎn)B(3,6)的坐標(biāo)代入拋物線解析式y(tǒng)=x2+bx+c得6=32﹣2×3+c.

          解得 c=3.

          所以拋物線的解析式為y=x2﹣2x+3.


          (2)

          解:∵拋物線y=x2﹣2x+3與y軸交于點(diǎn)A,

          ∴A(0,3).

          ∵B(3,6),

          可得直線AB的解析式為y=x+3.

          設(shè)直線AB下方拋物線上的點(diǎn)M坐標(biāo)為(x,x2﹣2x+3),過(guò)M點(diǎn)作y軸的平行線交直線AB于點(diǎn)N,則N(x,x+3).(如圖1)

          解得 x1=1,x2=2.

          故點(diǎn)M的坐標(biāo)為(1,2)或 (2,3).


          (3)

          解:如圖2,由 PA=PO,OA=c,可得

          ∵拋物線y=x2+bx+c的頂點(diǎn)坐標(biāo)為 ,

          ∴b2=2c.

          ∴拋物線 ,A(0, ),P( , ),D( ,0).

          可得直線OP的解析式為

          ∵點(diǎn)B是拋物線 與直線 的圖象的交點(diǎn),

          解得

          可得點(diǎn)B的坐標(biāo)為(﹣b, ).

          由平移后的拋物線經(jīng)過(guò)點(diǎn)A,可設(shè)平移后的拋物線解析式為

          將點(diǎn)D( ,0)的坐標(biāo)代入 ,得

          則平移后的拋物線解析式為

          令y=0,即

          解得

          依題意,點(diǎn)C的坐標(biāo)為(﹣b,0).

          則BC=

          則BC=OA.

          又∵BC∥OA,

          ∴四邊形OABC是平行四邊形.

          ∵∠AOC=90°,

          ∴四邊形OABC是矩形.


          【解析】(1)首先求出b的值,然后把b=﹣2及點(diǎn)B(3,6)的坐標(biāo)代入拋物線解析式y(tǒng)=x2+bx+c求出c的值,拋物線的解析式即可求出;(2)首先求出A點(diǎn)的坐標(biāo),進(jìn)而求出直線AB的解析式,設(shè)直線AB下方拋物線上的點(diǎn)M坐標(biāo)為(x,x2﹣2x+3),過(guò)M點(diǎn)作y軸的平行線交直線AB于點(diǎn)N,則N(x,x+3),根據(jù)三角形面積為3,求出x的值,M點(diǎn)的坐標(biāo)即可求出;(3)由PA=PO,OA=c,可得 ,又知拋物線y=x2+bx+c的頂點(diǎn)坐標(biāo)為 ,即可求出b和c的關(guān)系,進(jìn)而得到A(0, ),P( , ),D( ,0),根據(jù)B點(diǎn)是直線與拋物線的交點(diǎn),求出B點(diǎn)的坐標(biāo),由平移后的拋物線經(jīng)過(guò)點(diǎn)A,可設(shè)平移后的拋物線解析式為 ,再求出b與m之間的關(guān)系,再求出C點(diǎn)的坐標(biāo),根據(jù)兩對(duì)邊平行且相等的四邊形是平行四邊形,結(jié)合∠AOC=90°即可證明四邊形OABC是矩形.
          【考點(diǎn)精析】掌握二次函數(shù)的圖象和二次函數(shù)的性質(zhì)是解答本題的根本,需要知道二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知△ABC中,AB=AC,O為BC的中點(diǎn),AB與⊙O相切于點(diǎn)D.

          (1)求證:AC是⊙O的切線;
          (2)若∠B=33°,⊙O的半徑為1,求BD的長(zhǎng).(結(jié)果精確到0.01)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,某中學(xué)在教學(xué)樓前新建了一座雕塑AB,為了測(cè)量雕塑的高度,小明在二樓找到一點(diǎn)C,利用三角尺測(cè)得雕塑頂端點(diǎn)A的仰角∠QCA為45°,底部點(diǎn)B的俯角∠QCB為30°,小華在五樓找到一點(diǎn)D,利用三角尺測(cè)得點(diǎn)A的俯角∠PDA為60°,若AD為8m,則雕塑AB的高度為多少?(結(jié)果精確到0.1m,參考數(shù)據(jù): ≈1.73).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知點(diǎn)C(1,0),直線y=﹣x+7與兩坐標(biāo)軸分別交于A、B兩點(diǎn),D、E分別是AB,OA上的動(dòng)點(diǎn),當(dāng)△CDE周長(zhǎng)最小時(shí),點(diǎn)D坐標(biāo)為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,2)、B(﹣5,0)、C(﹣1,0),P(a,b)是△ABC的邊AC上一點(diǎn):

          (1)將△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△A1B1C1 , 請(qǐng)?jiān)诰W(wǎng)格中畫(huà)出△A1B1C1 , 旋轉(zhuǎn)過(guò)程中點(diǎn)A所走的路徑長(zhǎng)為
          (2)將△ABC沿一定的方向平移后,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P2(a+6,b+2),請(qǐng)?jiān)诰W(wǎng)格畫(huà)出上述平移后的△A2B2C2 , 并寫(xiě)出點(diǎn)A2的坐標(biāo):A2).
          (3)若以點(diǎn)O為位似中心,作△A3B3C3與△ABC成2:1的位似,則與點(diǎn)P對(duì)應(yīng)的點(diǎn)P3位似坐標(biāo)為(直接寫(xiě)出結(jié)果).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】解不等式組請(qǐng)結(jié)合題意,完成本題解答.
          (1)解不等式①,得 ;
          (2)解不等式②,得 ;
          (3)把不等式①和②的解集在數(shù)軸上表示出來(lái):

          (4)原不等式組的解集為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知拋物線y=(x+2)(x﹣4)與x軸交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,CD∥x軸交拋物線于點(diǎn)D,M為拋物線的頂點(diǎn).

          (1)求點(diǎn)A、B、C的坐標(biāo);
          (2)設(shè)動(dòng)點(diǎn)N(﹣2,n),求使MN+BN的值最小時(shí)n的值;
          (3)P是拋物線上一點(diǎn),請(qǐng)你探究:是否存在點(diǎn)P,使以P、A、B為頂點(diǎn)的三角形與△ABD相似(△PAB與△ABD不重合)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),OF⊥BC于點(diǎn)F,交⊙O于點(diǎn)E,AE與BC交于點(diǎn)H,點(diǎn)D為OE的延長(zhǎng)線上一點(diǎn),且∠ODB=∠AEC.

          (1)求證:BD是⊙O的切線;
          (2)求證:CE2=EHEA;
          (3)若⊙O的半徑為5,sinA=,求BH的長(zhǎng)。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在矩形ABCD中,AB=5,AD=3,點(diǎn)P是AB邊上一點(diǎn)(不與A,B重合),連接CP,過(guò)點(diǎn)P作PQ⊥CP交AD邊于點(diǎn)Q,連接CQ.

          (1)當(dāng)△CDQ≌△CPQ時(shí),求AQ的長(zhǎng);
          (2)取CQ的中點(diǎn)M,連接MD,MP,若MD⊥MP,求AQ的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案