日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在正方形ABCD中,點(diǎn)E是邊BC的中點(diǎn),連接AEDE,分別交BDAC于點(diǎn)P、Q,過(guò)點(diǎn)PPFAECB的延長(zhǎng)線于F,下列結(jié)論:

          AED+EAC+EDB90°,

          APFP,

          AEAO

          若四邊形OPEQ的面積為4,則該正方形ABCD的面積為36,

          CEEFEQDE

          其中正確的結(jié)論有( 。

          A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

          【答案】B

          【解析】

          ①正確:證明∠EOB=EOC=45°,再利用三角形的外角的性質(zhì)即可得出答案;

          ②正確:利用四點(diǎn)共圓證明∠AFP=ABP=45°即可;

          ③正確:設(shè)BE=EC=a,求出AE,OA即可解決問(wèn)題;

          ④錯(cuò)誤:通過(guò)計(jì)算正方形ABCD的面積為48;

          ⑤正確:利用相似三角形的性質(zhì)證明即可.

          ①正確:如圖,連接OE,

          ∵四邊形ABCD是正方形,

          ACBDOA=OC=OB=OD,

          ∴∠BOC=90°,

          BE=EC,

          ∴∠EOB=EOC=45°,

          ∵∠EOB=∠EDB+OED,∠EOC=EAC+AEO,

          ∴∠AED+EAC+EDO=EAC+AEO+OED+EDB=90°,故①正確;

          ②正確:如圖,連接AF,

          PFAE,

          ∴∠APF=ABF=90°,

          A,PB,F四點(diǎn)共圓,

          ∴∠AFP=ABP45°,

          ∴∠PAF=PFA45°,

          PA=PF,故②正確;

          ③正確:設(shè)BE=EC=a,則AEa,OAOCOBODa

          ,即AEAO,故③正確;

          ④錯(cuò)誤:根據(jù)對(duì)稱性可知,,

          ==2,

          OB=ODBE=EC,

          CD=2OEOECD,

          ,

          , ,

          ,

          ,故④錯(cuò)誤;

          ⑤正確:∵∠EPF=DCE=90°,∠PEF=DEC,

          ,

          ,

          EQ=PE

          CEEF=EQDE,故⑤正確;

          綜上所訴一共有4個(gè)正確,故選:B

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】閱讀下面內(nèi)容:我們已經(jīng)學(xué)習(xí)了《二次根式》和《乘法公式》,聰明的你可以發(fā)現(xiàn):當(dāng)時(shí),∵,∴,當(dāng)且僅當(dāng)時(shí)取等號(hào).請(qǐng)利用上述結(jié)論解決以下問(wèn)題:

          (1)當(dāng)時(shí),的最小值為_______;當(dāng)時(shí),的最大值為__________

          (2)當(dāng)時(shí),求的最小值.

          (3)如圖,四邊形ABCD的對(duì)角線AC ,BD相交于點(diǎn)O,△AOB、△COD的面積分別為49,求四邊形ABCD面積的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖, 在平面直角坐標(biāo)系中, 的頂點(diǎn)與原點(diǎn)重合,點(diǎn)軸的正半軸上,按以下步驟作圖:①以點(diǎn)為圓心,適當(dāng)長(zhǎng)度為半徑作弧,分別交邊于點(diǎn),;②分別以點(diǎn),為圓心,大于的長(zhǎng)為半徑作弧, 兩弧在內(nèi)交于點(diǎn);③作射線,交邊于點(diǎn).若,則點(diǎn)的坐標(biāo)為(

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,OACBAD都是等腰直角三角形,,反比例函數(shù)在第一象限的圖象經(jīng)過(guò)點(diǎn)B,則SOACSBAD=

          A.1.5B.2.5C.3D.1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知直線PD垂直平分⊙O的半徑OA于點(diǎn)BPD交⊙O于點(diǎn)C、D,PE是⊙O的切線,E為切點(diǎn),連接AE,交CD于點(diǎn)F

          1)若⊙O的半徑為8,求CD的長(zhǎng);

          2)若PF=13,求PE的長(zhǎng);

          3)在(2)的條件下,sinA,求EF的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】端午節(jié)是中國(guó)的傳統(tǒng)節(jié)日.今年端午節(jié)前夕,遂寧市某食品廠抽樣調(diào)查了河?xùn)|某居民區(qū)市民對(duì)A、B、C、D四種不同口味粽子樣品的喜愛(ài)情況,并將調(diào)查情況繪制成如圖兩幅不完整統(tǒng)計(jì)圖:

          1)本次參加抽樣調(diào)查的居民有   人.

          2)喜歡C種口味粽子的人數(shù)所占圓心角為   度.根據(jù)題中信息補(bǔ)全條形統(tǒng)計(jì)圖.

          3)若該居民小區(qū)有6000人,請(qǐng)你估計(jì)愛(ài)吃D種粽子的有   人.

          4)若有外型完全相同的A、BC、D棕子各一個(gè),煮熟后,小李吃了兩個(gè),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求他第二個(gè)吃的粽子恰好是A種粽子的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校校園主持人大賽結(jié)束后,將所有參賽選手的比賽成績(jī)(得分均為整數(shù))進(jìn)行整理,并分別繪制成扇形統(tǒng)計(jì)圖和頻數(shù)直方圖.部分信息如下:

          1)本次比賽參賽選手共有________人,扇形統(tǒng)計(jì)圖中“79.5~89.5”這一范圍的人數(shù)占總參賽人數(shù)的百分比為________

          2)補(bǔ)全圖2頻數(shù)直方圖;

          3)賽前規(guī)定,成績(jī)由高到低前40%的參賽選手獲獎(jiǎng).某參賽選手的比賽成績(jī)?yōu)?/span>88分,試判斷他能否獲獎(jiǎng),并說(shuō)明理由;

          4)成績(jī)前四名是2名男生和2名女生,若他們中任選2人作為該校文藝晚會(huì)的主持人,試求恰好選中11女為主持人的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平行四邊形ABCD中,P是對(duì)角線BD上的一點(diǎn),過(guò)點(diǎn)CCQ∥DB,且CQ=DP,連接AP、BQ、PQ.

          (1)求證:△APD≌△BQC;

          (2)若∠ABP+∠BQC=180°,求證:四邊形ABQP為菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】隨著“微信運(yùn)動(dòng)”被越來(lái)越多的人關(guān)注和喜愛(ài),某數(shù)學(xué)興趣小組隨機(jī)調(diào)查了我區(qū)50名教師某日“微信運(yùn)動(dòng)”中的步數(shù)情況進(jìn)行統(tǒng)計(jì)整理,繪制了如下的統(tǒng)計(jì)圖表(不完整):

          步數(shù)

          頻數(shù)

          頻率

          0≤x4000

          8

          0.16

          4000≤x8000

          15

          0.3

          8000≤x12000

          12

          a

          12000≤x16000

          b

          0.2

          16000≤x20000

          3

          0.06

          20000≤x24000

          2

          0.04

          請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

          1)寫(xiě)出a,b的值并補(bǔ)全頻數(shù)分布直方圖;

          2)我市約有5000名教師,用調(diào)查的樣本數(shù)據(jù)估計(jì)日行走步數(shù)超過(guò)12000步(包含12000步)的教師有多少名?

          3)若在50名被調(diào)查的教師中,選取日行走步數(shù)超過(guò)16000步(包含16000步)的兩名教師與大家分享心得,用樹(shù)形圖或列表法求被選取的兩名教師恰好都在20000步(包含20000步)以上的概率.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案