日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,PB為⊙O的切線,B為切點(diǎn),直線PO交⊙于點(diǎn)E,F(xiàn),過點(diǎn)B作PO的垂線BA,垂足為點(diǎn)D,交⊙O于點(diǎn)A,延長AO與⊙O交于點(diǎn)C,連接BC,AF.

          (1)求證:直線PA為⊙O的切線;
          (2)試探究線段EF,OD,OP之間的等量關(guān)系,并加以證明;
          (3)若BC=6,tan∠F=,求cos∠ACB的值和線段PE的長.
          (1)證明見解析;(2)EF2=4OD•OP,證明見解析;(3),.

          試題分析:(1)連接OB,根據(jù)垂徑定理的知識,得出OA=OB,∠POA=∠POB,從而證明△PAO≌△PBO,然后利用全等三角形的性質(zhì)結(jié)合切線的判定定理即可得出結(jié)論;
          (2)先證明△OAD∽△OPA,由相似三角形的性質(zhì)得出OA與OD、OP的關(guān)系,然后將EF=2OA代入關(guān)系式即可;
          (3)根據(jù)題意可確定OD是△ABC的中位線,設(shè)AD=x,然后利用三角函數(shù)的知識表示出FD、OA,在Rt△AOD中,由勾股定理解出x的值,從而能求出cos∠ACB,再由(2)可得OA2=OD•OP,代入數(shù)據(jù)即可得出PE的長.
          試題解析:(1)如圖,連接OB,
          ∵PB是⊙O的切線,∴∠PBO=90°.
          ∵OA=OB,BA⊥PO于D,∴AD=BD,∠POA=∠POB.
          又∵PO=PO,∴△PAO≌△PBO(SAS).
          ∴∠PAO="∠PBO=90°." ∴直線PA為⊙O的切線.

          (2)EF2=4OD•OP,證明如下:
          ∵∠PAO=∠PDA=90°,∴∠OAD+∠AOD=90°,∠OPA+∠AOP=90°.
          ∴∠OAD="∠OPA." ∴△OAD∽△OPA. ∴,即OA2=OD•OP.
          又∵EF=2OA,∴EF2=4OD•OP.
          (3)∵OA=OC,AD=BD,BC=6,∴OD=BC=3(三角形中位線定理).
          設(shè)AD=x,
          ∵tan∠F=,∴FD=2x,OA=OF=2x﹣3.
          在Rt△AOD中,由勾股定理,得(2x﹣3)2=x2+32
          解得,x1=4,x2=0(不合題意,舍去).∴AD=4,OA=2x﹣3=5.
          ∵AC是⊙O直徑,∴∠ABC=90°.
          又∵AC=2OA=10,BC=6,∴cos∠ACB=.
          ∵OA2=OD•OP,∴3(PE+5)=25.∴PE=.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一點(diǎn)O為圓心的圓經(jīng)過A、D兩點(diǎn),且∠AOD=90°,則圓心O到弦AD的距離是           cm.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在△ABC中,AB=AC,以AC為直徑的半圓O交BC于點(diǎn)E,DE⊥AB,垂足為D.

          (1)求證:點(diǎn)E是BC的中點(diǎn);
          (2)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
          (3)如果⊙O的直徑為9,cosB=,求DE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知,如圖點(diǎn)A、B、C在⊙O上,AO∥BC,∠OBC=40°,求∠ACB的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示,破殘的圓形輪片上,弦AB的垂直平分線交弧AB于點(diǎn)C,交弦AB于點(diǎn)D.

          (1)求作此殘片所在的圓(不寫作法,保留作圖痕跡);
          (2)已知:AB=16,CD=4.求(1)中所作圓的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          已知△ABC的三邊長分別是6,8,10,則△ABC外接圓的直徑是__________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          已知兩圓的半徑分別是4和6,圓心距為7,則這兩圓的位置關(guān)系是(    )
          A.相交B.外切C.外離D.內(nèi)含

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          若兩圓的半徑分別是2和3,圓心距是5,則這兩圓的位置關(guān)系是 _________ 

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          三角形的外心具有的性質(zhì)是(   )
          A.到三邊的距離相等B.到三個(gè)頂點(diǎn)的距離相等
          C.外心在三角形外D.外心在三角形內(nèi)

          查看答案和解析>>

          同步練習(xí)冊答案