日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,平面直角坐標(biāo)系中,直線ABy=﹣x+by軸于點(diǎn)A0,4),交x軸于點(diǎn)B

          1)求直線AB的表達(dá)式和點(diǎn)B的坐標(biāo);

          2)直線l垂直平分OBAB于點(diǎn)D,交x軸于點(diǎn)E,點(diǎn)P是直線l上一動(dòng)點(diǎn),且在點(diǎn)D的上方,設(shè)點(diǎn)P的縱坐標(biāo)為n

          ①用含n的代數(shù)式表示ABP的面積;

          ②當(dāng)SABP=8時(shí),求點(diǎn)P的坐標(biāo);

          ③在②的條件下,以PB為斜邊在第一象限作等腰直角PBC,求點(diǎn)C的坐標(biāo).

          【答案】1AB:y=-x+4,B(4,0);(2SABP=2n-4,P(2,6),C(6,4).

          【解析】試題分析

          1)把點(diǎn)A04)代入y=﹣x+b解得b的值,即可得到一次函數(shù)的解析式,由解析式即可求得點(diǎn)B的坐標(biāo);

          21)中所求點(diǎn)B的坐標(biāo)為(40)結(jié)合題意可知,直線PE為: ,由此可求得點(diǎn)D的坐標(biāo),從而可用含“n”的代數(shù)式表達(dá)出PD的長(zhǎng),由SABP=PD·OB即可用含“n”表達(dá)的面積;

          SABP=8代入中所求的表達(dá)式中,解方程即可求得“n”的值,從而可得此時(shí)點(diǎn)P的坐標(biāo);

          如下圖,設(shè)點(diǎn)C1C2是符合題意的點(diǎn)C,則由題意易得:四邊形BC1PC2是正方形,過點(diǎn)C1C1Mx軸于點(diǎn)M,過點(diǎn)PPN存在MC1于點(diǎn)N,則四邊形PEMN是矩形,△C1MB≌△PNC1;設(shè)BM= ,C1M=MN-NC1= ;在RtPBE中,由勾股定理可求得:PB=;再在RtBMC1中,由BM2+C1M2=BC12,建立關(guān)于“”分方程,解方程求得“”的值,即可求得點(diǎn)C1的坐標(biāo);同理可求得點(diǎn)C2的坐標(biāo);最后結(jié)合點(diǎn)C在第一象限這一條件即可得到點(diǎn)C的坐標(biāo).

          試題解析

          (1)∵直線ABy=﹣x+by軸于點(diǎn)A0,4),

          ∴b=4,

          直線AB的表達(dá)式為:y=﹣x+4.

          ∵在y=﹣x+4,當(dāng)y=0時(shí),x=4,

          直線ABx軸的交點(diǎn)B的坐標(biāo)為(4,0);

          2①∵點(diǎn)B的坐標(biāo)為(4,0),

          ∴OB=4,

          ∵直線l垂直平分OBAB于點(diǎn)D,交x軸于點(diǎn)E,

          點(diǎn)D的橫坐標(biāo)為2,

          y=-x+4,當(dāng)x=2時(shí),y=-2+4=2,

          點(diǎn)D的坐標(biāo)為(22.

          ∵P是直線l上一動(dòng)點(diǎn),且在點(diǎn)D的上方,點(diǎn)P的縱坐標(biāo)為n,

          ∴PD=n-2,

          SABP=PD·OB=;

          當(dāng)SABP=8時(shí),由解得

          此時(shí)點(diǎn)P的坐標(biāo)為(2,6);

          如圖,設(shè)點(diǎn)C1C2是符合題意的點(diǎn)C,則由題意易得:四邊形BC1PC2是正方形,過點(diǎn)C1C1M⊥x軸于點(diǎn)M,過點(diǎn)PPN存在MC1于點(diǎn)N,則四邊形PEMN是矩形,△C1MB≌△PNC1,

          ∴MN=PE=6,NC1=BM,PN=C1M=BM+BE

          設(shè)BM= ,C1M=MN-NC1= .

          ∵在RtPBE中,PE=6,BE=OB=2,

          PB=,

          ∵PB是等腰Rt△PC1B的斜邊,

          BC1=.

          Rt△BMC1中,BM2+C1M2=BC12,

          ,解得 ,

          當(dāng)時(shí),PN=C1M=6-4=2<BM+BE,

          只能取2,

          ∴BM=2C1M=6-2=4,

          ∴OM=OB+BM=4+2=6

          點(diǎn)C1的坐標(biāo)為(6,4);

          同理可求得點(diǎn)C2的坐標(biāo)為(0,2);

          點(diǎn)C在第一象限,

          點(diǎn)C的坐標(biāo)為(6,4.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在正方形中,為正方形的外角的角平分線,點(diǎn)在線段上,過點(diǎn)于點(diǎn),連接,過點(diǎn)于點(diǎn),交射線于點(diǎn)

          )如圖1,若點(diǎn)與點(diǎn)重合.

          依題意補(bǔ)全圖1.

          判斷的數(shù)量關(guān)系并加以證明.

          )如圖2,若點(diǎn)恰好在線段上,正方形的邊長(zhǎng)為,請(qǐng)寫出求長(zhǎng)的思路(可以不寫出計(jì)算結(jié)果).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知:E是∠AOB的平分線上一點(diǎn),EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點(diǎn)F.

          (1)求證:OE是CD的垂直平分線.

          (2)若∠AOB=60,請(qǐng)你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】清明節(jié)是祭祖和掃墓的日子,據(jù)寧波市民政局社會(huì)事務(wù)處的數(shù)據(jù)顯示,今年清明期間全市祭掃人數(shù)超300萬人次,其中的300萬用科學(xué)記數(shù)法表示為(
          A.3×105
          B.3×106
          C.30×105
          D.0.3×106

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,□ABCD的對(duì)角線AC、BD相交于點(diǎn)OEF過點(diǎn)O且與AB、CD分別相交于點(diǎn)E、F,連接EC

          1)求證:OEOF;

          2)若EFAC,BEC的周長(zhǎng)是10,求□ABCD的周長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明今年12歲,他爸爸今年36歲,幾年后爸爸的年齡是小明年齡的2倍?(列方程并估計(jì)問題的解)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我們知道在同一平面內(nèi),經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行

          小偉同學(xué)想通過同位角相等,兩直線平行作出圖形,具體作法是,過點(diǎn)P任意作一條直線a與直線l相交,再以P為頂點(diǎn)作一個(gè)角,直線a為角的一邊所在直線,則角的另一邊所在直線與直線l平行.

          1)請(qǐng)你參照小偉同學(xué)的作法,幫他完成剩余的作圖(保留作圖痕跡,不寫作法)

          2)你還有其它辦法嗎?請(qǐng)?jiān)趥溆脠D中完成(只需一種即可,保留作圖痕跡,不寫作法)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】若一個(gè)多邊形的每個(gè)外角都等于45°,則它的內(nèi)角和等于(
          A.720°
          B.1040°
          C.1080°
          D.540°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知射線OC上的任意一點(diǎn)到AOB的兩邊的距離都相等,點(diǎn)DE、F分別為邊OC、OA、OB上,如果要想證得OE=OF,只需要添加以下四個(gè)條件中的某一個(gè)即可,請(qǐng)寫出所有可能的條件的序號(hào)__________

          ①∠ODE=ODF;②∠OED=OFD;ED=FD;EFOC

          查看答案和解析>>

          同步練習(xí)冊(cè)答案