日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】中,,的頂點(diǎn)是底邊的中點(diǎn),兩邊分別與交于點(diǎn)

          1)如圖1, ,當(dāng)的位置變化時(shí),是否隨之變化?證明你的結(jié)論;

          2)如圖2,當(dāng),當(dāng) °時(shí),(1)中的結(jié)論仍然成立,求出此時(shí)的值.

          【答案】1BF+CEa,是定值,不變.見解析;(2609

          【解析】

          1)結(jié)論:BFCE=a,是定值.如圖1中,連接AD.只要證明△BDF≌△ADE即可解決問題;
          2)當(dāng)∠EDF=60°時(shí),BFEC=9,是定值.連接AD,作DMABM,DNACN.只要證明△DMF≌△DNEASA),推出FM=EN,由含30°的直角三角形的性質(zhì),推出BM=CN=,推出BFCE=BMFMCNEN=2BM,即可解決問題.

          解:(1)結(jié)論:BF+CE=a,是定值.

          理由:如圖1中,連接AD

          AB=AC,BAC=90°BD=CD,

          ADBC,B=∠C=∠BAD=∠CAD=45°AD=BD=CD

          ∵∠EDF=∠ADB=90°,

          ∴∠BDF=∠ADE,

          ∴△BDF≌△ADEASA),

          BF=AE,

          BF+CE=AE+CE=AC=a,是定值.

          2)當(dāng)EDF=60°時(shí),BF+EC=9,是定值.

          理由:如圖2中,連接AD,作DMABMDNACN

          ∵∠AMD=∠AND=90°,A=120°,

          ∴∠MDN=∠EDF=60°

          ∴∠MDF=∠NDE,

          AB=AC,BD=CD,

          ∴∠BAD=∠CAD,

          DMABM,DNACN,

          DM=DN,

          ∴△DMF≌△DNEASA),

          FM=EN,

          AB=ACBD=CD,

          ∴AD⊥BC

          ∵∠B=∠C=30°,

          ∴AD=AB=AC=3,BAD=∠CAD=60°

          DMABDNAC,

          ∴∠ADM=∠ADN=30°

          ∴AM=AN=AD=,

          BM=CN=,

          BF+CE=BMFM+CN+EN=2BM=9,是定值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某文化用品商店用元采購一批書包,上市后發(fā)現(xiàn)供不應(yīng)求,很快銷售完了.商店又去采購第二批同樣款式的書包,進(jìn)貨單價(jià)比第一次高元,商店用了元,所購數(shù)量是第一次的.

          1)求第一批采購的書包的單價(jià)是多少元?

          2)若商店按售價(jià)為每個(gè)書包元,銷售完這兩批書包,總共獲利多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(數(shù)學(xué)問題)在同一直角坐標(biāo)系內(nèi)直線,當(dāng)滿足什么條件時(shí),這兩條直線互相垂直?

          探究問題:我們采取一般問題特殊化的策略來進(jìn)行探究.

          探究一:如圖①,在同一直角坐標(biāo)系內(nèi)直線有怎樣的位置關(guān)系?

          解:如圖①,設(shè)點(diǎn)在直線上,則點(diǎn)一定在直線上.過點(diǎn)分別作的垂線,垂足分別為

          所以,在同一直角坐標(biāo)系內(nèi)直線互相垂直.

          探究二:如圖②,在同一直角坐標(biāo)系內(nèi)直線上,則點(diǎn)一定在直線上.過點(diǎn)分別作軸的垂線,垂足分別為

          ,,

          又∵

          又∵

          所以,在同一直角坐標(biāo)系內(nèi)直線互相垂直.

          探究三:如圖③,在同一直角坐標(biāo)系內(nèi)直線有怎樣的位置關(guān)系?

          (仿照上述方法解答,寫出探究過程)

          (1)在同一直角坐標(biāo)系內(nèi)直線,當(dāng)滿足數(shù)量關(guān)系為 時(shí),這兩條直線互相垂直.

          (2)在同一直角坐標(biāo)系內(nèi)已知直線與直線,使它與直線互相垂直,的值為: ;兩直線垂足的坐標(biāo)為:

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某商場銷售某種品牌的手機(jī),每部進(jìn)貨價(jià)為2500.市場調(diào)研表明:當(dāng)銷售價(jià)為2900元時(shí),平均每天能售出8部;而當(dāng)銷售價(jià)每降低50元時(shí),平均每天就能多售出4.

          (1)當(dāng)售價(jià)為2800元時(shí),這種手機(jī)平均每天的銷售利潤達(dá)到多少元?

          (2)若設(shè)每部手機(jī)降低x,每天的銷售利潤為y,試寫出yx之間的函數(shù)關(guān)系式.

          (3)商場要想獲得最大利潤,每部手機(jī)的售價(jià)應(yīng)訂為為多少元?此時(shí)的最大利潤是多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,中,,,平分,且,與相交于點(diǎn),邊的中點(diǎn),連接相交于點(diǎn),下列結(jié)論:;;,其中正確的有__________(填序號(hào)).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】ABC是等邊三角形,點(diǎn)EF分別是邊BC、AC上的點(diǎn),且BE=CF,AE、BF交于點(diǎn)D

          1)如圖1,求證:AE=BF

          2)如圖2,過點(diǎn)AAGBF于點(diǎn)G,過點(diǎn)CCHAEBF延長線于點(diǎn)H,若DBG中點(diǎn),求BHCH的值;

          3)如圖3,在(2)的條件下,LBA延長線上一點(diǎn),且FL=FB,△FLA的面積為2,求△ABC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某測量隊(duì)在山腳A處測得山上樹頂仰角為45°(如圖),測量隊(duì)在山坡上前進(jìn)600米到D處,再測得樹頂?shù)难鼋菫?/span>60°,已知這段山坡的坡角為30°,如果樹高為15米,則山高為( 。ň_到1米, =1.732).

          A. 585 B. 1014 C. 805 D. 820

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在中,平分于點(diǎn),延長至點(diǎn)平分,且的延長線交于點(diǎn),若

          求證:;

          的度數(shù);

          若在圖中繼續(xù)作的平分線交于點(diǎn),作的平分線交于點(diǎn),作的平分線交于點(diǎn),以此類推,作的平分線交于點(diǎn),請用含有的式了表示的度數(shù)(直接寫答案)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如:3+2,善于思考的小明進(jìn)行了以下探索:

          設(shè)a+b(其中a、bm、n均為整數(shù))

          則有:a+b,∴am2+2n2,b2mn,這樣小明就找到了一種把類似a+b的式子化為平方式的方法.

          請你仿照小明的方法探索并解決下列問題:

          (1)當(dāng)a、bm、n均為正整數(shù)時(shí),若a+b,用含mn的式子分別表示a、b得:a   ,b   ;

          (2)利用所探索的結(jié)論,用完全平方式表示出:7+4   

          (3)請化簡:.

          查看答案和解析>>

          同步練習(xí)冊答案