日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標系中,直線l1y=﹣x+2向下平移1個單位后,得到直線l2,l2x軸于點A,點P是直線l1上一動點,過點PPQy軸交l2于點Q

          1)求出點A的坐標;

          2)連接AP,當△APQ為以PQ為底邊的等腰三角形時,求點P和點Q的坐標;

          3)點BOA的中點,連接OQ、BQ,若點Py軸的左側(cè),M為直線y=﹣1上一動點,當△PQM與△BOQ全等時,求點M的坐標.

          【答案】1A(2,0);(2P(3,),Q(3,﹣);(3M(1,﹣1)(18)

          【解析】

          1)求出直線l2的解析式為y=﹣x+1,即可求A的坐標;

          2)設(shè)點Px,﹣x+2),Qx,﹣x+1),由AQAP,即可求P點坐標;

          3)設(shè)Pn,﹣n+2),Mm,﹣1),則Qn,﹣n+1),可求出BQ,OQ,PM,QM△PQM≌△BOQ時,PMBQ,QMOQ,結(jié)合勾股定理,求出m;△QPM≌△BOQ時,有PMOQ,QMBQ,結(jié)合勾股定理,求出m即可.

          解:(1直線l1y=﹣x+2向下平移1個單位后,得到直線l2

          直線l2的解析式為y=﹣x+1,

          ∵l2x軸于點A

          ∴A2,0);

          2)當△APQ為以PQ為底邊的等腰三角形時,

          ∴AQAP,

          P是直線l1上一動點,

          設(shè)點Px,﹣x+2),

          過點PPQ∥y軸交l2于點Q

          ∴Qx,﹣x+1),

          (﹣x+22=(﹣x+12,

          ∴x3

          ∴P3),Q3,﹣);

          3BOA的中點,

          ∴B1,0),

          ∴PQBO1,

          設(shè)Pn,﹣n+2),Mm,﹣1),則Qn,﹣n+1),

          ∴BQ,OQ,

          PM,QM,

          ∵△PQM△BOQ全等,

          △PQM≌△BOQ時,

          PMBQQMOQ,

          ,

          ∴n2m2,

          Py軸的左側(cè),

          ∴n0,

          ∴m1

          ∴m=﹣1,

          ∴M(﹣1,﹣1);

          △QPM≌△BOQ時,

          PMOQ,QMBQ

          ,

          ∴nm,

          Py軸的左側(cè),

          ∴n0

          ∴m2,

          ∴m8,

          ∴M(﹣18);

          綜上所述,M(﹣1,﹣1)或M(﹣1,8).1y=﹣x+2向下平移1個單位后,得到直線l2,

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知△ABC,按以下步驟作圖:①分別以 B,C 為圓心,以大于BC 的長為半徑作弧,兩弧相交于兩點 M,N;②作直線 MN AB 于點 D,連接 CD.若 CD=AC,∠A=50°,則∠ACB 的度數(shù)為

          A.90°B.95°C.105°D.110°

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,將ABCD的邊AB延長到點E,使BE=AB,連接DE,交邊BC于點F.

          (1)求證:BEF≌△CDF.

          (2)連接BD,CE,若∠BFD=2A,求證四邊形BECD是矩形.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在一組數(shù)據(jù),中,各數(shù)據(jù)與它們的平均數(shù)的差的絕對值的平均數(shù),記作叫做這組數(shù)據(jù)的平均差.一組數(shù)據(jù)的平均差越大,就說明這組數(shù)據(jù)的離散程度越大.則樣本:、、、的平均差是(

          A. B. 3 C. 6 D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,點P、Q分別是邊長為4cm的等邊△ABCABBC上的動點(端點除外),點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s,連接AQCP交于點M,則在P、Q運動的過程中,

          1)求證:△ABQ CAP;

          2)∠CMQ的大小變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);

          3)連接PQ,當點P、Q運動多少秒時,△APQ是等腰三角形?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某初中學校欲向高一級學校推薦一名學生,根據(jù)規(guī)定的推薦程序:首先由本年級200名學生民主投票,每人只能推薦一人(不設(shè)棄權(quán)票),選出了票數(shù)最多的甲、乙、丙三人.投票結(jié)果統(tǒng)計如圖一:

          其次,對三名候選人進行了筆試和面試兩項測試.各項成績?nèi)缬冶硭荆簣D二是某同學根據(jù)上表繪制的一個不完整的條形圖.請你根據(jù)以上信息解答下列問題:

          1)補全圖一和圖二.

          2)請計算每名候選人的得票數(shù).

          3)若每名候選人得一票記1分,投票、筆試、面試三項得分按照253的比確定,計算三名候選人的平均成績,成績高的將被錄取,應該錄取誰?

          測試項目

          測試成績/

          筆試

          92

          90

          95

          面試

          85

          95

          80

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知在平面直角坐標系中的位置如圖所示,將向右平移5個單位長度,再向下平移3個單位長度得到.(圖中每個小方格邊長均為1個單位長度)

          1)在圖中畫出平移后的;

          2)直接寫出各頂點的坐標______,____________.

          3)在軸上找到一點,當取最小值時,點的坐標是______.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,等邊的頂點,頂點、軸上.

          (1)寫出、兩點的坐標;

          (2)的面積和周長.

          查看答案和解析>>

          同步練習冊答案