日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,一次函數(shù)y=﹣ x+1的圖象與x軸、y軸分別交于點(diǎn)A、B,以線段AB為邊在第一象限作等邊△ABC.

          (1)若點(diǎn)C在反比例函數(shù)y= 的圖象上,求該反比例函數(shù)的解析式;
          (2)點(diǎn)P(2 ,m)在第一象限,過點(diǎn)P作x軸的垂線,垂足為D,當(dāng)△PAD與△OAB相似時(shí),P點(diǎn)是否在(1)中反比例函數(shù)圖象上?如果在,求出P點(diǎn)坐標(biāo);如果不在,請加以說明.

          【答案】
          (1)

          解:在y=﹣ x+1中,令y=0可解得x= ,令x=0可得y=1,

          ∴A( ,0),B(0,1),

          ∴tan∠BAO= = = ,

          ∴∠BAO=30°,

          ∵△ABC是等邊三角形,

          ∴∠BAC=60°,

          ∴∠CAO=90°,

          在Rt△BOA中,由勾股定理可得AB=2,

          ∴AC=2,

          ∴C( ,2),

          ∵點(diǎn)C在反比例函數(shù)y= 的圖象上,

          ∴k=2× =2 ,

          ∴反比例函數(shù)解析式為y=


          (2)

          解:∵P(2 ,m)在第一象限,

          ∴AD=OD﹣OA=2 = ,PD=m,

          當(dāng)△ADP∽△AOB時(shí),則有 = ,即 = ,解得m=1,此時(shí)P點(diǎn)坐標(biāo)為(2 ,1);

          當(dāng)△PDA∽△AOB時(shí),則有 = ,即 = ,解得m=3,此時(shí)P點(diǎn)坐標(biāo)為(2 ,3);

          把P(2 ,3)代入y= 可得3≠

          ∴P(2 ,3)不在反比例函數(shù)圖象上,

          把P(2 ,1)代入反比例函數(shù)解析式得1= ,

          ∴P(2 ,1)在反比例函數(shù)圖象上;

          綜上可知P點(diǎn)坐標(biāo)為(2 ,1)


          【解析】(1)由直線解析式可求得A、B坐標(biāo),在Rt△AOB中,利用三角函數(shù)定義可求得∠BAO=30°,且可求得AB的長,從而可求得CA⊥OA,則可求得C點(diǎn)坐標(biāo),利用待定系數(shù)法可求得反比例函數(shù)解析式;(2)分△PAD∽△ABO和△PAD∽△BAO兩種情況,分別利用相似三角形的性質(zhì)可求得m的值,可求得P點(diǎn)坐標(biāo),代入反比例函數(shù)解析式進(jìn)行驗(yàn)證即可.
          【考點(diǎn)精析】本題主要考查了一次函數(shù)的性質(zhì)的相關(guān)知識點(diǎn),需要掌握一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時(shí),y隨x的增大而增大(2)當(dāng)k<0時(shí),y隨x的增大而減小才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計(jì)算:( 1﹣20140﹣2sin30°+

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形ABCD中,點(diǎn)F在AD上,點(diǎn)E在BC上,把這個(gè)矩形沿EF折疊后,使點(diǎn)D恰好落在BC邊上的G點(diǎn)處,若矩形面積為4 且∠AFG=60°,GE=2BG,則折痕EF的長為(
          A.1
          B.
          C.2
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計(jì)算:(π﹣2017)0+6sin60°﹣|5﹣ |﹣( 2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將邊長為4的菱形ABCD紙片折疊,使點(diǎn)A恰好落在對角線的交點(diǎn)O處,若折痕EF=2 ,則∠A=(
          A.120°
          B.100°
          C.60°
          D.30°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D,點(diǎn)B的坐標(biāo)為(3,0),頂點(diǎn)C的坐標(biāo)為(1,4).

          (1)求二次函數(shù)的解析式和直線BD的解析式;
          (2)點(diǎn)P是直線BD上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)M,當(dāng)點(diǎn)P在第一象限時(shí),求線段PM長度的最大值;
          (3)在拋物線上是否存在異于B、D的點(diǎn)Q,使△BDQ中BD邊上的高為2 ?若存在求出點(diǎn)Q的坐標(biāo);若不存在請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知平行四邊形OABC的三個(gè)頂點(diǎn)A、B、C在以O(shè)為圓心的半圓上,過點(diǎn)C作CD⊥AB,分別交AB、AO的延長線于點(diǎn)D、E,AE交半圓O于點(diǎn)F,連接CF.
          (1)判斷直線DE與半圓O的位置關(guān)系,并說明理由;
          (2)①求證:CF=OC; ②若半圓O的半徑為12,求陰影部分的周長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知向量 為實(shí)數(shù).
          (1)若 ,求t的值;
          (2)若t=1,且 ,求 的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖是某超市地下停車場入口的設(shè)計(jì)圖,請根據(jù)圖中數(shù)據(jù)計(jì)算CE的長度.(結(jié)果保留小數(shù)點(diǎn)后兩位;參考數(shù)據(jù):sin22°=0.3746,cos22°=0.9272,tan22°=0.4040)

          查看答案和解析>>

          同步練習(xí)冊答案