一家用電器開發(fā)公司研制出一種新型電子產(chǎn)品,每件的生產(chǎn)成本為18元,按定價(jià)40元出售,每月可銷售20萬件.為了增加銷量,公司決定采取降價(jià)的辦法,經(jīng)市場調(diào)研,每降價(jià)1元,月銷售量可增加2萬件.
⑴ 求出月銷售量y(萬件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
⑵ 求出月銷售利潤z(萬元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并在下面坐標(biāo)系中,畫出圖象草圖;
⑶ 為了使月銷售利潤不低于480萬元,請借助⑵中所畫圖象進(jìn)行分析,說明銷售單價(jià)的取值范圍.
(1);(2)
;(3)
.
解析試題分析:(1)根據(jù)題意,化簡即可.
(2)根據(jù)月銷售利潤=每件利潤×月銷售量得到,分簡即可,然后畫出此函數(shù)的圖象.
(3)先計(jì)算出時(shí)x所對應(yīng)的值,再根據(jù)函數(shù)性質(zhì)和圖象進(jìn)行回答即可.
(1).
∴y與x的函數(shù)關(guān)系式為.
(2),
∴z與x的函數(shù)關(guān)系式為.
此函數(shù)的圖象大致為:
(3)令,得
,整理得
,
解得,
.
由圖象可知,要使月銷售利潤不低于萬元,產(chǎn)品的銷售單價(jià)應(yīng)在
元到
元之間(即
).
考點(diǎn):二次函數(shù)的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
拋物線與
軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,其中點(diǎn)B的坐標(biāo)為
.
(1)求拋物線對應(yīng)的函數(shù)表達(dá)式;]
(2)將(1)中的拋物線沿對稱軸向上平移,使其頂點(diǎn)M落在線段BC上,記該拋物線為G,求拋物線G所對應(yīng)的函數(shù)表達(dá)式;
(3)將線段BC平移得到線段(B的對應(yīng)點(diǎn)為
,C的對應(yīng)點(diǎn)為
),使其經(jīng)過(2)中所得拋物線G的頂點(diǎn)M,且與拋物線G另有一個(gè)交點(diǎn)N,求點(diǎn)
到直線
的距離
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,矩形ABCD中,AB=20,BC=10,點(diǎn)P為AB邊上一動點(diǎn),DP交AC于點(diǎn)Q.
(1)求證:△APQ∽△CDQ;
(2)P點(diǎn)從A點(diǎn)出發(fā)沿AB邊以每秒1個(gè)單位的速度向B點(diǎn)移動,移動時(shí)間為t秒.
①當(dāng)t為何值時(shí),DP⊥AC?
②設(shè),寫出y與t之間的函數(shù)解析式,并探究P點(diǎn)運(yùn)動到第幾秒到第幾秒之間時(shí),y取得最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,拋物線y=-x2+bx+c的頂點(diǎn)為Q,與x軸交于A(-1,0)、B(5,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式及其頂點(diǎn)Q的坐標(biāo);
(2)在該拋物線的對稱軸上求一點(diǎn)P,使得△PAC的周長最小,請?jiān)趫D中畫出點(diǎn)P的位置,并求點(diǎn)P的坐標(biāo);
(3)如圖2,若點(diǎn)D是第一象限拋物線上的一個(gè)動點(diǎn),過D作DE⊥x軸,垂足為E.
①有一個(gè)同學(xué)說:“在第一象限拋物線上的所有點(diǎn)中,拋物線的頂點(diǎn)Q與x軸相距最遠(yuǎn),所以當(dāng)點(diǎn)D運(yùn)動至點(diǎn)Q時(shí),折線D-E-O的長度最長”,這個(gè)同學(xué)的說法正確嗎?請說明理由.
②若DE與直線BC交于點(diǎn)F.試探究:四邊形DCEB能否為平行四邊形?若能,請直接寫出點(diǎn)D的坐標(biāo);若不能,請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如果一條拋物線與
軸有兩個(gè)交點(diǎn),那么以該拋物線的頂點(diǎn)和這兩個(gè)交點(diǎn)為頂點(diǎn)的三角形稱為這條拋物線的“拋物線三角形”.
(1)“拋物線三角形”一定是 三角形;
(2)如圖,△OAB是拋物線的“拋物線三角形”,是否存在以原點(diǎn)O為對稱中心的矩形ABCD?若存在,求出過O、C、D三點(diǎn)的拋物線的表達(dá)式;若不存在,說明理由;
(3)在(2)的條件下,若以點(diǎn)E為圓心,r為半徑的圓與線段AD只有一個(gè)公共點(diǎn),求出r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,拋物線
與x軸交于點(diǎn)A(-2,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,
),線段AC上有一動點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度向點(diǎn)C移動,線段AB上有另一個(gè)動點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長度的速度向點(diǎn)A移動,兩動點(diǎn)同時(shí)出發(fā),設(shè)運(yùn)動時(shí)間為t秒.
(1)求該拋物線的解析式;
(2)在整個(gè)運(yùn)動過程中,是否存在某一時(shí)刻,使得以A,P,Q為頂點(diǎn)的三角形與△AOC相似?如果存在,請求出對應(yīng)的t的值;如果不存在,請說明理由.
(3)在y軸上有兩點(diǎn)M(0,m)和N(0,m+1),若要使得AM+MN+NP的和最小,請直接寫出相應(yīng)的m、t的值以及AM+MN+NP的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,△ABC的邊AB在x軸上,∠ABC=90°,AB=BC,OA=1,OB=4,拋物線經(jīng)過A、C兩點(diǎn).
(1)求拋物線的解析式及其頂點(diǎn)坐標(biāo);
(2)如圖①,點(diǎn)P是拋物線上位于x軸下方的一點(diǎn),點(diǎn)Q與點(diǎn)P關(guān)于拋物線的對稱軸對稱,過點(diǎn)P、Q分別向x軸作垂線,垂足為點(diǎn)D、E,記矩形DPQE的周長為d,求d的最大值,并求出使d最大值時(shí)點(diǎn)P的坐標(biāo);
(3)如圖②,點(diǎn)M是拋物線上位于直線AC下方的一點(diǎn),過點(diǎn)M作MF⊥AC于點(diǎn)F,連接MC,作MN∥BC交直線AC于點(diǎn)N,若MN將△MFC的面積分成2:3兩部分,請確定M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某經(jīng)銷商代理銷售一種手機(jī),按協(xié)議,每賣出一部手機(jī)需另交品牌代理費(fèi)100元,已知該種手機(jī)每部進(jìn)價(jià)800元,銷售單價(jià)為1200元時(shí),每月能賣出100部,市場調(diào)查發(fā)現(xiàn),若每部手機(jī)每讓利50元,則每月可多售出40部.
(1)若每月要獲取36000元利潤,求讓利價(jià)
(利潤=銷售收入-進(jìn)貨成本-品牌代理費(fèi))
(2)設(shè)讓利x元,月利潤為y元,寫出y與x的函數(shù)關(guān)系式,并求讓利多少元時(shí),月利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=-x+4x+5交x軸于A、B(以A左B右)兩點(diǎn),交y軸于點(diǎn)C.
(1)求直線BC的解析式;
(2)點(diǎn)P為拋物線第一象限函數(shù)圖象上一點(diǎn),設(shè)P點(diǎn)的橫坐標(biāo)為m,△PBC的面積為S,求S與m的函數(shù)關(guān)系式;
(3)在(2)的條件下,連接AP,拋物線上是否存在這樣的點(diǎn)P,使得線段PA被BC平分,如果不存在,請說明理由;如果存在,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com