日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】定義:對角互補(bǔ)且有一組鄰邊相等的四邊形稱為奇異四邊形.

          1)概念理解:

          在平行四邊形、菱形、矩形、正方形中,你認(rèn)為屬于奇異四邊形的有__________ ;

          2)性質(zhì)探究:

          ①如圖1,四邊形ABCD是奇異四邊形,AB=AD,求證:CA平分∠BCD;

          ②如圖2,四邊形ABCD是奇異四邊形,AB=AD,∠BCD=,試說明:cosα=;

          3)性質(zhì)應(yīng)用:

          如圖3,四邊形ABCD是奇異四邊形,四條邊中僅有BC=CD,且四邊形ABCD的周長為6+2,∠BAC=45°,AC=3,求奇異四邊形ABCD的面積.

          【答案】1)正方形;(2)①見解析,②見解析;(39.

          【解析】

          1)利用奇異四邊形的定義直接判斷即可;
          2)①如圖1,過點(diǎn)AAMCBM,ANCDN.證明AMB≌△AND,根據(jù)全等三角形的性質(zhì)得到AM=AN,根據(jù)角的內(nèi)部到角兩邊距離相等的點(diǎn)在角平分線上即可證明.

          ②由①可知:∠ACD=BCD=α,根據(jù)CN=CD–DN=CD–BM=CD–CM–BC=CD–CN–BC),得到CN=,在RtACN中,根據(jù)余弦的定義即可證明.

          3)連接BD.由(2)可知:cos45°=,得到AD+AB=2AC×=6,根據(jù)四邊形ABCD的周長為6+2,得到BC=CD=,得到∠DAB=90°,根據(jù)奇異四邊形的性質(zhì),有∠BCD=90°,根據(jù)S四邊形ABCD=SADB+SBDC即可求解.

          1)根據(jù)奇異四邊形的定義可知:正方形是奇異四邊形,故答案為:正方形.

          2)①如圖1,過點(diǎn)AAMCBMANCDN

          ∵∠ABC+D=180°,∠ABM+ABC=180°

          ∴∠ABM=D,

          ∵∠AMB=AND=90°,AB=AD

          ∴△AMB≌△AND,

          AM=AN,∵AMCBM,ANCDN,∴CA平分∠BCD

          ②由①可知:∠ACD=BCD=α,

          CN=CD–DN=CD–BM=CD–CM–BC=CD–CN–BC),

          CN=,

          RtACN中,cosα==

          3)如圖3,連接BD

          由(2)可知:cos45°=,∴AD+AB=2AC×=6,

          ∵四邊形ABCD的周長為6+2,∴BC=CD=,

          ∵∠BAC=DAC=45°,

          ∴∠DAB=90°,

          ∵四邊形是奇異四邊形,∴∠BCD=90°,

          AD+AB=6,∴(AD+AB2=AD2+2ADAB+AB2=36,

          AD2+AB2=BD2=BC2+CD2=20

          ADAB=8,∴S四邊形ABCD=SADB+SBDC=ADAB+CDBC=9

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

          (1)求證:ED為⊙O的切線;

          (2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

          【答案】(1)證明見解析;(2)

          【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
          (2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

          試題解析:(1)證明:連接OD

          OEAB,

          ∴∠COE=CAD,EOD=ODA,

          OA=OD,

          ∴∠OAD=ODA,

          ∴∠COE=DOE,

          在△COE和△DOE中,

          ∴△COE≌△DOE(SAS),

          EDOD

          ED的切線;

          (2)連接CD,交OEM,

          RtODE中,

          OD=32,DE=2,

          OEAB,

          ∴△COE∽△CAB

          AB=5,

          AC是直徑,

          EFAB,

          SADF=S梯形ABEFS梯形DBEF

          ∴△ADF的面積為

          型】解答
          結(jié)束】
          25

          【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

          (1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

          (2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

          (3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】有這樣一個(gè)問題:探究函數(shù)的圖象與性質(zhì).

          小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)的圖象與性質(zhì)進(jìn)行了探究.

          下面是小東的探究過程,請補(bǔ)充完成:

          1)化簡函數(shù)解析式,當(dāng)x-1時(shí),y   ,當(dāng)x-1時(shí)y   

          2)根據(jù)(1)中的結(jié)果,請?jiān)谒o坐標(biāo)系中畫出函數(shù)的圖象;

          3)結(jié)合函數(shù)圖象,寫出該函數(shù)的一條性質(zhì):   

          4)結(jié)合畫出的函數(shù)圖象,解決問題:若關(guān)于x的方程只有一個(gè)實(shí)數(shù)根,直接寫出實(shí)數(shù)a的取值范圍:   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在矩形ABCD中,AB=6cm,BC=12cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB邊向點(diǎn)B以每秒1cm的速度移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)沿BC邊向點(diǎn)C以每秒2cm的速度移動(dòng)P、Q兩點(diǎn)在分別到達(dá)B、C兩點(diǎn)后就停止移動(dòng),設(shè)兩點(diǎn)移動(dòng)的時(shí)間為t秒,回答下列問題:

          1)如圖1,當(dāng)t為幾秒時(shí),PBQ的面積等于5cm2

          2)如圖2,當(dāng)t=秒時(shí),試判斷DPQ的形狀,并說明理由;

          3)如圖3,以Q為圓心,PQ為半徑作⊙Q

          ①在運(yùn)動(dòng)過程中,是否存在這樣的t值,使⊙Q正好與四邊形DPQC的一邊(或邊所在的直線)相切?若存在,求出t值;若不存在,請說明理由;

          ②若⊙Q與四邊形DPQC有三個(gè)公共點(diǎn),請直接寫出t的取值范圍。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(9分)為進(jìn)一步推廣“陽光體育”大課間活動(dòng),某中學(xué)對已開設(shè)的A實(shí)心球,B立定跳遠(yuǎn),C跑步,D跳繩四種活動(dòng)項(xiàng)目的學(xué)生喜歡情況進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2的統(tǒng)計(jì)圖,請結(jié)合圖中的信息解答下列問題:

          (1)請計(jì)算本次調(diào)查中喜歡“跑步”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;

          (2)隨機(jī)抽取了5名喜歡“跑步”的學(xué)生,其中有3名女生,2名男生,現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生,請用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線x軸交于A、B兩點(diǎn),頂點(diǎn)C的縱坐標(biāo)為﹣2,現(xiàn)將拋物線向右平移2個(gè)單位,得到拋物線 ,則下列結(jié)論:①ab+c>0;②b0;③陰影部分的面積為4;④若c=﹣1,則.其中正確的是_____(寫出所有正確結(jié)論的序號)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】九年級(1)班和(2)班分別有一男一女共4名學(xué)生報(bào)名參加學(xué)校文藝匯演主持人的選拔。

          1)若從報(bào)名的4名學(xué)生中隨機(jī)選1名,則所選的這名學(xué)生是女生的概率是多少.

          2)若從報(bào)名的4名學(xué)生中隨機(jī)選2名,用樹狀圖或表格列出所有可能的情況,并求出這2名學(xué)生來自同一個(gè)班級的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知A點(diǎn)的縱坐標(biāo)是2:

          (1)求反比例函數(shù)的表達(dá)式;

          (2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】把圖中陰影部分的小正方形移動(dòng)一個(gè),使它與其余四個(gè)陰影部分的正方形組成一個(gè)既是軸對稱又是中心對稱的新圖形,這樣的移法,正確的是( 。

          A. 6→3 B. 7→16 C. 7→8 D. 6→15

          查看答案和解析>>

          同步練習(xí)冊答案