日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】【發(fā)現(xiàn)】如圖∠ACB=∠ADB=90°,那么點(diǎn)D在經(jīng)過A,B,C三點(diǎn)的圓上(如圖①)

          (1)【思考】如圖②,如果∠ACB=∠ADB=a(a≠90°)(點(diǎn)C,D在AB的同側(cè)),那么點(diǎn)D還在經(jīng)過A,B,C三點(diǎn)的圓上嗎?
          請(qǐng)證明點(diǎn)D也不在⊙O內(nèi).
          (2)【應(yīng)用】
          利用【發(fā)現(xiàn)】和【思考】中的結(jié)論解決問題:
          若四邊形ABCD中,AD∥BC,∠CAD=90°,點(diǎn)E在邊AB上,CE⊥DE.
          (1)作∠ADF=∠AED,交CA的延長(zhǎng)線于點(diǎn)F(如圖④),求證:DF為Rt△ACD的外接圓的切線;

          (2)如圖⑤,點(diǎn)G在BC的延長(zhǎng)線上,∠BGE=∠BAC,已知sin∠AED=,AD=1,求DG的長(zhǎng).

          【答案】
          (1)

          解:【思考】如圖1,

          假設(shè)點(diǎn)D在⊙O內(nèi),延長(zhǎng)AD交⊙O于點(diǎn)E,連接BE,則∠AEB=∠ACB,

          ∵∠ADE是△BDE的外角,

          ∴∠ADB>∠AEB,

          ∴∠ADB>∠ACB,

          因此,∠ADB>∠ACB這與條件∠ACB=∠ADB矛盾,

          所以點(diǎn)D也不在⊙O內(nèi),

          所以點(diǎn)D即不在⊙O內(nèi),也不在⊙O外,點(diǎn)D在⊙O上


          (2)

          【應(yīng)用】

          (1)如圖2,取CD的中點(diǎn)O,則點(diǎn)O是RT△ACD的外心,

          ∵∠CAD=∠DEC=90°,

          ∴點(diǎn)E在⊙O上,

          ∴∠ACD=∠AED,

          ∵∠FDA=∠AED,

          ∴∠ACD=∠FDA,

          ∵∠DAC=90°,

          ∴∠ACD+∠ADC=90°,

          ∴∠FDA+∠ADC=90°,

          ∴OD⊥DF,

          ∴DF為Rt△ACD的外接圓的切線;

          (2)∵∠BGE=∠BAC,

          ∴點(diǎn)G在過C、A、E三點(diǎn)的圓上,如圖3,

          又∵過C、A、E三點(diǎn)的圓是RT△ACD的外接圓,即⊙O,

          ∴點(diǎn)G在⊙O上,

          ∵CD是直徑,

          ∴∠DGC=90°,

          ∵AD∥BC,

          ∴∠ADG=90°

          ∵∠DAC=90°

          ∴四邊形ACGD是矩形,

          ∴DG=AC,

          ∵sin∠AED=,∠ACD=∠AED,

          ∴sin∠ACD=,

          在RT△ACD中,AD=1,

          ∴CD=,

          ∴AC==,

          ∴DG=


          【解析】【思考】假設(shè)點(diǎn)D在⊙O內(nèi),利用圓周角定理及三角形外角的性質(zhì),可證得與條件相矛盾的結(jié)論,從而證得點(diǎn)D不在⊙O內(nèi);
          【應(yīng)用】(1)作出RT△ACD的外接圓,由發(fā)現(xiàn)可得點(diǎn)E在⊙O上,則證得∠ACD=∠FDA,又因?yàn)椤螦CD+∠ADC=90°,于是有∠FDA+∠ADC=90°,即可證得DF是圓的切線;
          (2)根據(jù)【發(fā)現(xiàn)】和【思考】可得點(diǎn)G在過C、A、E三點(diǎn)的圓O上,進(jìn)而易證四邊形ACGD是矩形,根據(jù)已知條件解直角三角形ACD可得AC的長(zhǎng),即DG的長(zhǎng).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn),∠BAC的平分線交⊙O于點(diǎn)D,交⊙O的切線BE于點(diǎn)E,過點(diǎn)D作DF⊥AC,交AC的延長(zhǎng)線于點(diǎn)F.

          (1)求證:DF是⊙O的切線;
          (2)若DF=3,DE=2,求 的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在△ABC中,AB=AC,射線BP從BA所在位置開始繞點(diǎn)B順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<180°)

          (1)當(dāng)∠BAC=60°時(shí),將BP旋轉(zhuǎn)到圖2位置,點(diǎn)D在射線BP上.若∠CDP=120°,則∠ACD__∠ABD(填“>”、“=”、“<”),線段BD、CD與AD之間的數(shù)量關(guān)系是_____;

          (2)當(dāng)∠BAC=120°時(shí),將BP旋轉(zhuǎn)到圖3位置,點(diǎn)D在射線BP上,若∠CDP=60°,求證:BD﹣CD=AD;

          (3)將圖3中的BP繼續(xù)旋轉(zhuǎn),當(dāng)30°<α<180°時(shí),點(diǎn)D是直線BP上一點(diǎn)(點(diǎn)P不在線段BD上),若∠CDP=120°,請(qǐng)直接寫出線段BD、CD與AD之間的數(shù)量關(guān)系(不必證明).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB是⊙O的直徑,OA=1,AC是⊙O的弦,過點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,若BD=,則∠ACD= .

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】活動(dòng)1:
          在一只不透明的口袋中裝有標(biāo)號(hào)為1,2,3的3個(gè)小球,這些球除標(biāo)號(hào)外都相同,充分?jǐn)噭,甲、乙、丙三位同學(xué)丙→甲→乙的順序依次從袋中各摸出一個(gè)球(不放回),摸到1號(hào)球勝出,計(jì)算甲勝出的概率.(注:丙→甲→乙表示丙第一個(gè)摸球,甲第二個(gè)摸球,乙最后一個(gè)摸球)
          (1)活動(dòng)1:
          在一只不透明的口袋中裝有標(biāo)號(hào)為1,2,3的3個(gè)小球,這些球除標(biāo)號(hào)外都相同,充分?jǐn)噭,甲、乙、丙三位同學(xué)丙→甲→乙的順序依次從袋中各摸出一個(gè)球(不放回),摸到1號(hào)球勝出,計(jì)算甲勝出的概率.(注:丙→甲→乙表示丙第一個(gè)摸球,甲第二個(gè)摸球,乙最后一個(gè)摸球)
          (2)活動(dòng)2:
          在一只不透明的口袋中裝有標(biāo)號(hào)為1,2,3,4的4個(gè)小球,這些球除標(biāo)號(hào)外都相同,充分?jǐn)噭,?qǐng)你對(duì)甲、乙、丙三名同學(xué)規(guī)定一個(gè)摸球順序: 他們按這個(gè)順序從袋中各摸出一個(gè)球(不放回),摸到1號(hào)球勝出,則第一個(gè)摸球的同學(xué)勝出的概率等于 ,最后一個(gè)摸球的同學(xué)勝出的概率等于
          (3)猜想:
          在一只不透明的口袋中裝有標(biāo)號(hào)為1,2,3,…,n(n為正整數(shù))的n個(gè)小球,這些球除標(biāo)號(hào)外都相同,充分?jǐn)噭,甲、乙、丙三名同學(xué)從袋中各摸出一個(gè)球(不放回),摸到1號(hào)球勝出,猜想:這三名同學(xué)每人勝出的概率之間的大小關(guān)系.
          你還能得到什么活動(dòng)經(jīng)驗(yàn)?(寫出一個(gè)即可)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在“愛滿揚(yáng)州”慈善一日捐活動(dòng)中,學(xué)校團(tuán)總支為了了解本校學(xué)生的捐款情況,隨機(jī)抽取了50名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計(jì),并繪制成統(tǒng)計(jì)圖.

          (1)這50名同學(xué)捐款的眾數(shù)為 元,中位數(shù)為 元。
          (2)求這50名同學(xué)捐款的平均數(shù)。
          (3)該校共有600名學(xué)生參與捐款,請(qǐng)估計(jì)該校學(xué)生的捐款總數(shù)。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中剪去一個(gè)邊長(zhǎng)為1的小正方形CEFG,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運(yùn)動(dòng)到點(diǎn)B時(shí)停止(不含點(diǎn)A和點(diǎn)B),則△ABP的面積S隨著時(shí)間t變化的函數(shù)圖象大致是( 。

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某超市為促銷,決定對(duì)A,B兩種商品進(jìn)行打折出售.打折前,買6件A商品和3件B商品需要54元,買3件A商品和4件B商品需要32元;打折后,買50件A商品和40件B商品僅需364元,這比打折前少花多少錢?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知正方形ABCD的邊長(zhǎng)為6,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.若AE=2,則FM的長(zhǎng)為

          查看答案和解析>>

          同步練習(xí)冊(cè)答案