日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 2.方程組$\left\{\begin{array}{l}{\sqrt{2}x+\sqrt{3}y=1}\\{\sqrt{3}x+\sqrt{2}y=2}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=2\sqrt{3}-\sqrt{2}}\\{y=\sqrt{3}-2\sqrt{2}}\end{array}\right.$.

          分析 利用解方程組的方法與步驟求得方程組的解即可.

          解答 解:$\left\{\begin{array}{l}{\sqrt{2}x+\sqrt{3}y=1①}\\{\sqrt{3}x+\sqrt{2}y=2②}\end{array}\right.$
          ①×$\sqrt{3}$-②×$\sqrt{2}$得,y=$\sqrt{3}$-2$\sqrt{2}$③,
          把③代入①得,$\sqrt{2}$x+$\sqrt{3}$($\sqrt{3}$-2$\sqrt{2}$)=1,
          解得x=2$\sqrt{3}$-$\sqrt{2}$,
          所以原方程組的解為$\left\{\begin{array}{l}{x=2\sqrt{3}-\sqrt{2}}\\{y=\sqrt{3}-2\sqrt{2}}\end{array}\right.$.
          故答案為:$\left\{\begin{array}{l}{x=2\sqrt{3}-\sqrt{2}}\\{y=\sqrt{3}-2\sqrt{2}}\end{array}\right.$.

          點評 此題考查二次根式的實際運用,掌握二元一次方程組的解法是解決問題的關鍵.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:解答題

          12.先化簡,再求值:($\frac{{x}^{2}}{x-1}$-x+1)÷$\frac{4{x}^{2}-4x+1}{1-x}$,其中x=-$\frac{1}{4}$.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          13.已知:扇形的圓心角為150°,弧長為20π,求扇形面積.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          10.用配方法解方程:x2-5=2$\sqrt{3}$x.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:填空題

          17.計算:[a(a-b)2]3[a2(b-a)3]2=a7(a-b)12

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:選擇題

          7.已知半徑為r的圓的面積是半徑為2cm和3cm的兩個圓的面積之和,則r=( 。
          A.5cmB.$\sqrt{5}$cmC.13cmD.$\sqrt{13}$cm

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          14.若代數(shù)式$\sqrt{(2-a)^{2}}$+$\sqrt{(a-4)^{2}}$=2成立,求a的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:填空題

          7.已知如圖,⊙P與x軸切于點O,P點的坐標為(0,2),點A在⊙P上,且A點的坐標為(1,2+$\sqrt{3}$),⊙P沿x軸正方向滾動,當點A第一次落在x軸上時,點P的坐標為($\frac{5}{3}π$,2)(結(jié)果保留π)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:填空題

          8.若關于x的方程$\frac{2x+a}{2}$=4(x-1)的解為x=-2,則a的值為-20.

          查看答案和解析>>

          同步練習冊答案