日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,點P為∠MON的平分線上一點,以P為頂點的角的兩邊分別與射線OM,ON交于A,B兩點,如果∠APB繞點P旋轉(zhuǎn)時始終滿足OAOB=OP2,我們就把∠APB叫做∠MON的智慧角.

          (1)如圖2,已知∠MON=90°,點P為∠MON的平分線上一點,以P為頂點的角的兩邊分別與射線OM,ON交于A,B兩點,且∠APB=135°.求證:∠APB是∠MON的智慧角.

          (2)如圖1,已知∠MON=α(0°<α<90°),OP=2.若∠APB是∠MON的智慧角,連結(jié)AB,用含α的式子分別表示∠APB的度數(shù)和△AOB的面積.

          (3)如圖3,C是函數(shù)y=(x>0)圖象上的一個動點,過C的直線CD分別交x軸和y軸于A,B兩點,且滿足BC=2CA,請求出∠AOB的智慧角∠APB的頂點P的坐標.

          【答案】(1)證明見解析 (2)∠APB=180°﹣α,S△AOB=2sinα (3)(,)或(,﹣

          【解析】

          (1)由角平分線求出∠AOPBOPMON=45°,再證出∠OAPOPB,證明AOP∽△POB,得出對應(yīng)邊成比例,得出OP2OAOB,即可得出結(jié)論;

          (2)由∠APB是∠MON的智慧角,得出,證出AOP∽△POB,得出對應(yīng)角相等∠OAPOPB,即可得出∠APB=180°﹣α;過點AAHOBH,由三角形的面積公式得出:SAOBOBAH,即可得出SAOB=2sinα;

          (3)設(shè)點Ca,b),則ab=3,過點CCHOAH;分兩種情況:

          ①當點By軸正半軸上時;當點Ax軸的負半軸上時,BC=2CA不可能;當?shù)?/span>Ax軸的正半軸上時;先求出,由平行線得出ACH∽△ABO,得出比例式:,得出OB=3b,OA,求出OAOB,根據(jù)∠APB是∠AOB的智慧角,得出OP,即可得出點P的坐標;

          ②當點By軸的負半軸上時;由題意得出:ABCA,由AAS證明ACH≌△ABO,得出OBCHb,OAAHa,得出OAOB,求出OP,即可得出點P的坐標.

          (1)證明:∵∠MON=90°,P為∠MON的平分線上一點,

          ∴∠AOP=BOP=MON=45°,

          ∵∠AOP+OAP+APO=180°,

          ∴∠OAP+APO=135°,

          ∵∠APB=135°,

          ∴∠APO+OPB=135°,

          ∴∠OAP=OPB,

          ∴△AOP∽△POB,

          ,

          OP2=OAOB,

          ∴∠APB是∠MON的智慧角;

          (2)解:∵∠APB是∠MON的智慧角,

          OAOB=OP2,

          ,

          P為∠MON的平分線上一點,

          ∴∠AOP=BOP=α,

          ∴△AOP∽△POB,

          ∴∠OAP=OPB,

          ∴∠APB=OPB+OPA=OAP+OPA=180°﹣α,

          即∠APB=180°﹣α;

          過點AAHOBH,連接AB;如圖1所示:

          SAOBOBAH=OBOAsinα=OP2sinα,

          OP=2,

          SAOB=2sinα;

          (3)設(shè)點C(a,b),則ab=3,過點CCHOAH;分兩種情況:

          ①當點By軸正半軸上時;當點Ax軸的負半軸上時,如圖2所示:

          BC=2CA不可能;

          當點Ax軸的正半軸上時,如圖3所示:

          BC=2CA,

          CHOB,

          ∴△ACH∽△ABO,

          ,

          OB=3b,OA=

          OAOB=,

          ∵∠APB是∠AOB的智慧角,

          OP=

          ∵∠AOB=90°,OP平分∠AOB,

          ∴點P的坐標為:(,);

          ②當點By軸的負半軸上時,如圖4所示:

          BC=2CA,

          AB=CA,

          ACHABO中,

          ,

          ∴△ACH≌△ABO(AAS),

          OB=CH=b,OA=AH=a,

          OAOB=ab=

          ∵∠APB是∠AOB的智慧角,

          OP=

          ∵∠AOB=90°,OP平分∠AOB,

          ∴點P的坐標為:(,﹣);

          綜上所述:點P的坐標為:(,),或(,﹣).

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,線段AB經(jīng)過圓心O,交⊙O于點A、C,點D⊙O上,連接AD,BD,∠A=∠B=30°.

          證明:(1)BD⊙O的切線

          (2)如果BD=2OC的長

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】設(shè)a,b,c△ABC的三條邊,關(guān)于x的方程x2+x+c-a=0有兩個相等的實數(shù)根,方程3cx+2b=2a的根為x=0.

          (1)試判斷△ABC的形狀;

          (2)若a,b為方程x2+mx-3m=0的兩個根,求m的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,要在寬為22米的九州大道兩邊安裝路燈,路燈的燈臂CD2米,且與燈柱BC120°角,路燈采用圓錐形燈罩,燈罩的軸線DO與燈臂CD垂直,當燈罩的軸線DO通過公路路面的中心線時照明效果最佳,此時,路燈的燈柱BC高度應(yīng)該設(shè)計為(  )

          A. 112)米 B. 112)米 C. 112)米 D. 114)米

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖所示,污水處理公司為某樓房建一座周長為30米的三級污水處理池,平面圖為矩形米,中間兩條隔墻分別為、,池墻的厚度不考慮.

          (1)用含的代數(shù)式表示外圍墻的長度;

          (2)如果設(shè)計時要求矩形水池恰好被隔墻分成三個全等的矩形,且它們均與矩形相似,求此時的長;

          (3)如果設(shè)計時要求矩形水池恰好被隔墻分成三個全等的正方形.已知池的外圍墻建造單價為每米400元,中間兩條隔墻建造單價每米300元,池底建造的單價為每平方米100元.試計算此項工程的總造價.(結(jié)果精確到1元)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,某人為了測量小山頂上的塔ED的高,他在山下的點A處測得塔尖點D的仰角為45°,再沿AC方向前進60 m到達山腳點B,測得塔尖點D的仰角為60°,塔底點E的仰角為30°,求塔ED的高度.(結(jié)果保留根號)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,△ABC內(nèi)接于⊙O,直徑BD交AC于E,過O作FG⊥AB,交AC于F,交AB于H,交⊙O于G.

          (1)求證:OFDE=OE2OH;

          (2)若⊙O的半徑為12,且OE:OF:OD=2:3:6,求陰影部分的面積.(結(jié)果保留根號)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】對于二次函數(shù)y=x2-3x+2和一次函數(shù)y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)稱為這兩個函數(shù)的再生二次函數(shù),其中t是不為零的實數(shù),其圖象記作拋物線L.現(xiàn)有點A(2,0)和拋物線L上的點B(-1,n),請完成下列任務(wù):

          (1)(嘗試)

          t=2時,拋物線y=t(x2-3x+2)+(1-t)(-2x+4)的頂點坐標為________;

          (2)判斷點A是否在拋物線L上;

          (3)n的值.

          (4)(發(fā)現(xiàn))

          通過(2)(3)的演算可知,對于t取任何不為零的實數(shù),拋物線L總過定點,坐標為________.

          (5)(應(yīng)用)

          二次函數(shù)y=-3x2+5x+2是二次函數(shù)y=x23x+2和一次函數(shù)y=-2x+4的一個再生二次函數(shù)嗎?如果是,求出t的值;如果不是,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知點A(1,0),B(0,3),將△AOB繞點O逆時針旋轉(zhuǎn)90°,得到△COD,設(shè)EAD的中點.

          (1)若FCD上一動點,求出當△DEF與△COD相似時點F的坐標;

          (2)過Ex軸的垂線l,在直線l上是否存在一點Q,使∠CQO=∠CDO?若存在,求出Q點的坐標;若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案