日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖△ABC中,AB=AC,EFBC,且⊙O內(nèi)切于四邊形BCFE.
          (1)當(dāng)
          AE
          BE
          =
          1
          2
          時(shí),sinB=______;
          (2)當(dāng)
          AE
          BE
          =
          1
          n
          時(shí),sinB等于多少?請(qǐng)說明理由.
          連接AO并延長交EF于點(diǎn)D,交BC于點(diǎn)H,則AH⊥BC,連接OG,則OG⊥AB
          (1)∵∠BAH+∠AOG=90°,∠B+∠BAH=90°
          ∴∠AOG=∠B,
          ∵EFBC
          AD
          DH
          =
          AE
          EB
          =
          1
          2

          設(shè)⊙O的半徑為r,則
          AD
          2r
          =
          1
          2

          ∵AD=
          2r
          2
          =r
          ∴AO=2r
          又∵OG=r
          ∴AG=
          (2r)2-r2
          =
          3
          r
          ∴sinB=
          3
          2
          ;

          (2)sinB=
          2
          n+1
          n+2

          設(shè)AB與⊙O相切于點(diǎn)G,連接OG,則OG⊥AB
          ∴∠AOG=∠B
          ∵EFBC
          AD
          DH
          =
          AE
          EB
          =
          1
          n

          設(shè)⊙O的半徑為r,則
          AD
          2r
          =
          1
          n

          ∵AD=
          2r
          n

          ∴AO=AD+r=
          n+2
          n
          r

          又∵OG=r
          ∴AG=
          AO2-OG2
          =
          (
          n+2
          n
          r)
          2
          -r2
          =
          2
          n+1
          n
          r
          ∴sinB=sin∠AOG=
          AG
          AO
          =
          2
          n+1
          2
          r
          n+2
          n
          r
          =
          2
          n+1
          n+2
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系中,A(0、6)、B(2
          3
          、2),BC⊥x軸于C,直線OB交AC于P.
          (1)以O(shè)為圓心,OP為半徑作⊙O,判斷直線AC與⊙O位置關(guān)系.
          (2)過B作BD⊥y軸于D,以O(shè)為圓心作半徑為r的⊙O,半徑r使D在⊙O內(nèi),C在⊙O外,以B為圓心作⊙B,半徑R,且⊙O和⊙B相切,求R、r范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知:如圖,在△ABC中,∠ACB=90°,∠ABC的平分線BD交AC于點(diǎn)D,DE⊥DB交AB于點(diǎn)E,過B、D、E三點(diǎn)作⊙O.
          (1)求證:AC是⊙O的切線;
          (2)設(shè)⊙O交BC于點(diǎn)F,連接EF,若BC=9,CA=12.求
          EF
          AC
          的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,AB是⊙O的直徑,AC是⊙O的弦,AE交⊙O于點(diǎn)E,且AE⊥CP于點(diǎn)D,且AC平分∠DAB.
          (1)求證:直線CP與⊙O相切.
          (2)若AB=10,∠CAB=30°,求CD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,在梯形ABCD中,ABDC.
          ①若∠A=90°,AB+CD=BC,則以AD為直徑的圓與BC相切;
          ②若∠A=90°,當(dāng)以AD為直徑的圓與BC相切,則以BC為直徑的圓也與AD相切;
          ③若以AD為直徑的圓與BC相切,則AB+CD=BC;
          ④若以AD為直徑的圓與BC相切,則以BC為直徑的圓與AD相切.
          以上判斷正確的個(gè)數(shù)有(  )
          A.1B.2C.3D.4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長線上,點(diǎn)C在⊙O上,CA=CD,∠CDA=30°.
          (1)試判斷直線CD與⊙O的位置關(guān)系,并說明理由;
          (2)若⊙O的半徑為4,求點(diǎn)A到CD所在直線的距離.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,AC是⊙O的直徑,PA切⊙O于點(diǎn)A,點(diǎn)B是⊙O上的一點(diǎn),且∠BAC=30°,∠APB=60°.
          (1)求證:PB是⊙O的切線;
          (2)若⊙O的半徑為2,求弦AB及PA,PB的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示,△ABC是直角三角形,∠ABC=90°,以AB為直徑的⊙O交AC于E點(diǎn),點(diǎn)D是BC邊的中點(diǎn),連接DE.
          (1)請(qǐng)判斷DE與⊙O是怎樣的位置關(guān)系?請(qǐng)說明理由.
          (2)若⊙O的半徑為4,DE=3,求AE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,已知PA、PB是⊙O的切線,A、B為切點(diǎn),AC是⊙O的直徑,∠P=40°,則∠BAC的度數(shù)是( 。
          A.10°B.20°C.30°D.40°

          查看答案和解析>>

          同步練習(xí)冊(cè)答案