日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在△ABC中,AB的垂直平分線交BC于點DAC的垂直平分線交BC于點E,連接AD,AE.

          (1)若∠BAC=110°,求∠DAE的度數(shù);

          (2)若∠BAC=θ(0°<θ<180°),求∠DAE的度數(shù).(用含θ的式子表示)

          【答案】(1) 40°;(2) ①∠DAE=2θ-180°,②∠DAE=180°-2θ.

          【解析】

          (1)根據(jù)線段的垂直平分線的性質得到DB=DA,EC=EA,根據(jù)等腰三角形的性質解答即可;
          (2)分兩種情況進行討論,先根據(jù)線段垂直平分線的性質,得到∠B=BAD,C=CAE,進而得到∠BAD+CAE=B+C=180°-α,再根據(jù)角的和差關系進行計算即可.

          (1)AB的垂直平分線交BC于點D,AC的垂直平分線交BC于點E,

          DBDA,ECEA.

          ∵∠BAC=110°,

          ∴∠BC=70°.

          DBDA,ECEA,

          ∴∠DABBEACC,

          ∴∠DABEAC=70°,

          ∴∠DAE=110°-70°=40°.

          (2)分兩種情況:

          ①如答圖1所示,當∠BAC90°,

          DM垂直平分AB,

          DADB,

          ∴∠BBAD.

          同理可得,∠CCAE,

          ∴∠BADCAEBC=180°-θ,

          ∴∠DAEBAC-(BADCAE)=θ-(180°-θ)=2θ-180°.

             

          答圖1 答圖2

          ②如答圖2所示,當∠BAC<90°時,

          DM垂直平分AB

          DADB,

          ∴∠BBAD.

          同理可得,∠CCAE,

          ∴∠BADCAEBC=180°-θ,

          ∴∠DAEBADCAEBAC=180°-θ-θ=180°-2θ.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,拋物線y1=a(x+2)2﹣3與y2= (x﹣3)2+1交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.則以下結論: ①無論x取何值,y2的值總是正數(shù);
          ②a=1;
          ③當x=0時,y2﹣y1=4;
          ④2AB=3AC;
          其中正確結論是(

          A.①②
          B.②③
          C.③④
          D.①④

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知梯形ABCD,請使用無刻度直尺畫圖.
          (1)在圖1中畫出一個與梯形ABCD面積相等,且以CD為邊的三角形;

          (2)圖2中畫一個與梯形ABCD面積相等,且以AB為邊的平行四邊形.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,AB是半圓O直徑,半徑OC⊥AB,連接AC,∠CAB的平分線AD分別交OC于點E,交 于點D,連接CD、OD,以下三個結論:①AC∥OD;②AC=2CD;③線段CD是CE與CO的比例中項,其中所有正確結論的序號是(
          A.①②
          B.①③
          C.②③
          D.①②③

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】分解因式:

          (1)a2babc; (2)3a(xy)+9(yx);

          (3)(2ab)2+8ab; (4)(m2m)2(m2m)+ .

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系xOy,直線y=x﹣1與y軸交于點A,與雙曲線y= 交于點B(m,2).

          (1)求點B的坐標及k的值;
          (2)將直線AB平移,使它與x軸交于點C,與y軸交于點D,若△ABC的面積為6,求直線CD的表達式.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某校為了了解九年級學生(共450人)的身體素質情況,體育老師對九(1)班的50位學生進行一分鐘跳繩次數(shù)測試,以測試數(shù)據(jù)為樣本,繪制了如下部分頻數(shù)分布表和部分頻數(shù)分布直方圖.

          組別

          次數(shù)x

          頻數(shù)(人數(shù))

          A

          80≤x<100

          6

          B

          100≤x<120

          8

          C

          120≤x<140

          m

          D

          140≤x<160

          18

          E

          160≤x<180

          6


          請結合圖表解答下列問題:
          (1)表中的m=;
          (2)請把頻數(shù)分布直方圖補完整;
          (3)這個樣本數(shù)據(jù)的中位數(shù)落在第組;
          (4)若九年級學生一分鐘跳繩次數(shù)(x)合格要求是x≥120,則估計九年級學生中一分鐘跳繩成績不合格的人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,點 的坐標為,以 A 為頂點的的兩邊始終與 軸交于 、兩點(左面),且

          (1)如圖,連接,當 時,試說明:

          (2)過點 軸,垂足為,當時,將沿所在直線翻折,翻折后邊軸于點 ,求點 的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知yx﹣1成正比例,且當x=3時,y=4.

          (1)求yx之間的函數(shù)表達式;

          (2)當x=﹣1時,求y的值;

          (3)當﹣3<y<5時,求x的取值范圍.

          查看答案和解析>>

          同步練習冊答案