日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】綜合與實(shí)踐

          問(wèn)題情境:在數(shù)學(xué)活動(dòng)課上,老師出示了這樣一個(gè)問(wèn)題:如圖1,在矩形ABCD中,AD=2AB,EAB延長(zhǎng)線上一點(diǎn),且BE=AB,連接DE,交BC于點(diǎn)M,以DE為一邊在DE的左下方作正方形DEFG,連接AM.試判斷線段AMDE的位置關(guān)系.

          探究展示:勤奮小組發(fā)現(xiàn),AM垂直平分DE,并展示了如下的證明方法:

          證明:∵BE=AB,∴AE=2AB.

          ∵AD=2AB,∴AD=AE.

          四邊形ABCD是矩形,∴AD∥BC.

          .(依據(jù)1)

          ∵BE=AB,∴.∴EM=DM.

          AM△ADEDE邊上的中線,

          ∵AD=AE,∴AM⊥DE.(依據(jù)2)

          ∴AM垂直平分DE.

          反思交流:

          (1)①上述證明過(guò)程中的依據(jù)1”“依據(jù)2”分別是指什么?

          試判斷圖1中的點(diǎn)A是否在線段GF的垂直平分線上,請(qǐng)直接回答,不必證明;

          (2)創(chuàng)新小組受到勤奮小組的啟發(fā),繼續(xù)進(jìn)行探究,如圖2,連接CE,以CE為一邊在CE的左下方作正方形CEFG,發(fā)現(xiàn)點(diǎn)G在線段BC的垂直平分線上,請(qǐng)你給出證明;

          探索發(fā)現(xiàn):

          (3)如圖3,連接CE,以CE為一邊在CE的右上方作正方形CEFG,可以發(fā)現(xiàn)點(diǎn)C,點(diǎn)B都在線段AE的垂直平分線上,除此之外,請(qǐng)觀察矩形ABCD和正方形CEFG的頂點(diǎn)與邊,你還能發(fā)現(xiàn)哪個(gè)頂點(diǎn)在哪條邊的垂直平分線上,請(qǐng)寫出一個(gè)你發(fā)現(xiàn)的結(jié)論,并加以證明.

          【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)詳見(jiàn)解析.

          【解析】

          (1)①直接得出結(jié)論;

          ②借助問(wèn)題情景即可得出結(jié)論;

          (2)先判斷出∠BCE+BEC=90°,進(jìn)而判斷出∠BEC=BCG,得出GHC≌△CBE,判斷出AD=BC,進(jìn)而判斷出HC=BH,即可得出結(jié)論;

          (3)先判斷出四邊形BENM為矩形,進(jìn)而得出∠1+2=90°,再判斷出∠1=3,得出ENF≌△EBC,即可得出結(jié)論.

          (1)①依據(jù)1:兩條直線被一組平行線所截,所得的對(duì)應(yīng)線段成比例(或平行線分線段成比例).

          依據(jù)2:等腰三角形頂角的平分線,底邊上的中線及底邊上的高互相重合(或等腰三角形的三線合一”).

          ②答:點(diǎn)A在線段GF的垂直平分線上.

          理由:由問(wèn)題情景知,AMDE,

          ∵四邊形DEFG是正方形,

          DEFG,

          ∴點(diǎn)A在線段GF的垂直平分線上.

          (2)證明:過(guò)點(diǎn)GGHBC于點(diǎn)H,

          ∵四邊形ABCD是矩形,點(diǎn)EAB的延長(zhǎng)線上,

          ∴∠CBE=ABC=GHC=90°,

          ∴∠BCE+BEC=90°.

          ∵四邊形CEFG為正方形,

          CG=CE,GCE=90°,

          ∴∠BCE+BCG=90°.

          ∴∠2BEC=BCG.

          ∴△GHC≌△CBE.

          HC=BE,

          ∵四邊形ABCD是矩形,

          AD=BC.

          AD=2AB,BE=AB,

          BC=2BE=2HC,

          HC=BH.

          GH垂直平分BC.

          ∴點(diǎn)GBC的垂直平分線上.

          (3)答:點(diǎn)FBC邊的垂直平分線上(或點(diǎn)FAD邊的垂直平分線上).

          過(guò)點(diǎn)FFMBC于點(diǎn)M,過(guò)點(diǎn)EENFM于點(diǎn)N.

          ∴∠BMN=ENM=ENF=90°.

          ∵四邊形ABCD是矩形,點(diǎn)EAB的延長(zhǎng)線上,

          ∴∠CBE=ABC=90°,

          ∴四邊形BENM為矩形.

          BM=EN,BEN=90°.

          ∴∠1+2=90°.

          ∵四邊形CEFG為正方形,

          EF=EC,CEF=90°.

          ∴∠2+3=90°.

          ∴∠1=3.

          ∵∠CBE=ENF=90°,

          ∴△ENF≌△EBC.

          NE=BE.BM=BE.

          ∵四邊形ABCD是矩形,

          AD=BC.

          AD=2AB,AB=BE.

          BC=2BM.

          BM=MC.

          FM垂直平分BC.

          ∴點(diǎn)FBC邊的垂直平分線上.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,函數(shù)(是常數(shù),)在同一平面直角坐標(biāo)系的圖象可能是(

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了弘揚(yáng)優(yōu)秀傳統(tǒng)文化,某校組織了一次詩(shī)詞大會(huì),小明和小麗同時(shí)參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個(gè)字組成一句唐詩(shī),其答案為兩個(gè)黃鸝鳴翠柳”.

          (1)小明回答該問(wèn)題時(shí),對(duì)第二個(gè)字是選個(gè)還是選難以抉擇,若隨機(jī)選擇其中一個(gè),則小明回答正確的概率是__________;

          (2)小麗回答該問(wèn)題時(shí),對(duì)第二個(gè)字是選個(gè)還是選、第五個(gè)字是選還是選都難以抉擇,若分別隨機(jī)選擇,請(qǐng)用列表或畫樹狀圖的方法求小麗回答正確的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在中,過(guò)對(duì)角線上一點(diǎn),,且,,則( )

          A. 3 B. 4 C. 5 D. 6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,AE∥BF,AC平分∠BAE,交BF于點(diǎn)C,BD平分∠ABC,交AE于點(diǎn)D,連接CD.

          (1)求證:四邊形ABCD是菱形;

          (2)若AB=5,AC=6,求AE,BF之間的距離.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,拋物線經(jīng)過(guò)點(diǎn),與軸負(fù)半軸交于點(diǎn),與軸交于點(diǎn),且.

          (1)求拋物線的解析式;

          (2)點(diǎn)軸上,且,求點(diǎn)的坐標(biāo);

          (3)點(diǎn)在拋物線上,點(diǎn)在拋物線的對(duì)稱軸上,是否存在以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形?若存在。求出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,點(diǎn)P在∠MON的角平分線上,過(guò)點(diǎn)POP的垂線交OM,ONC、DPAOMPBON,垂足分別為ABEPBD,則下列結(jié)論錯(cuò)誤的是( 。

          A.CPPDB.PAPBC.PEOED.OBCD

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在等腰直角ABC中,∠CAB=90°,F(xiàn)AB邊上一點(diǎn),作射線CF,過(guò)點(diǎn)BBGCF于點(diǎn)G,連接AG.

          (1)求證:∠ABG=ACF;

          (2)用等式表示線段CG,AG,BG之間的等量關(guān)系,并證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四邊形ABCD為平行四邊形延長(zhǎng)AD到E,使DE=AD,連接EB,EC,DB添加一個(gè)條件,不能使四邊形DBCE成為矩形的是( )

          A)AB=BE BBEDC CADB=90° DCEDE

          查看答案和解析>>

          同步練習(xí)冊(cè)答案