日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)如圖,已知D是△ABC的邊AB上一點(diǎn),F(xiàn)C∥AB,DF交AC于點(diǎn)E,DE=EF.求證:E是AC的中點(diǎn).
          (2)如圖,已知AD是△ABC的角平分線,DE∥AC交AB于點(diǎn)E,DF∥AB交AC于點(diǎn)F.求證:四邊形AEDF是菱形.
          分析:(1)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠ADF=∠F,然后利用“角邊角”證明△ADE和△CEF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AE=CE,從而得證;
          (2)先求出四邊形AEDF是平行四邊形,再根據(jù)角平分線的定義以及平行線的性質(zhì)求出∠ADF=∠FAD,根據(jù)等角對(duì)等邊可得AF=FD,然后根據(jù)鄰邊相等的平行四邊形是菱形即可得證.
          解答:(1)證明:∵FC∥AB,
          ∴∠ADF=∠F,
          在△ADE和△CEF中,
          ∠ADF=∠F
          DE=EF
          ∠AED=∠CEF
          ,
          ∴△ADE≌△CEF(ASA),
          ∴AE=CE,
          即E是AC的中點(diǎn);

          (2)證明:∵DE∥AC,DF∥AB,
          ∴四邊形AEDF是平行四邊形,且∠EAD=∠ADF,
          又∵AD是△ABC的角平分線,
          ∴∠EAD=∠FAD,
          ∴∠ADF=∠FAD,
          ∴AF=FD,
          ∴四邊形AEDF是菱形.
          點(diǎn)評(píng):本題考查了菱形的判定,全等三角形的判定與性質(zhì),比較簡(jiǎn)單,主要涉及鄰邊相等的平行四邊形是菱形,熟練掌握平行四邊形與菱形的關(guān)系是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知AB是⊙O的直徑,∠CAB=30°,過(guò)點(diǎn)C的⊙O的切線交AB延長(zhǎng)線于D,若OD=4
          3
          ,那么弦AC長(zhǎng)等于
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知A是半徑為1的⊙O上一點(diǎn),以A為圓心,AO為半徑畫(huà)弧交⊙O于點(diǎn)B、C;以C為圓心,CO為半徑畫(huà)弧交⊙O于點(diǎn)D、A.則圖中陰影面積為
           
          平方單位(結(jié)果取準(zhǔn)確值).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•梁子湖區(qū)模擬)如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過(guò)點(diǎn)C的直線與AB的延長(zhǎng)線交于點(diǎn)P,AC=PC,∠COB=2∠PCB.
          (1)求證:PC是⊙O的切線;
          (2)若點(diǎn)M是
          AB
          的中點(diǎn),CM交AB于點(diǎn)N,AB=8,求MN•MC的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•資陽(yáng))已知a、b是正實(shí)數(shù),那么,
          a+b
          2
          ab
          是恒成立的.
          (1)由(
          a
          -
          b
          )2≥0
          恒成立,說(shuō)明
          a+b
          2
          ab
          恒成立;
          (2)填空:已知a、b、c是正實(shí)數(shù),由
          a+b
          2
          ab
          恒成立,猜測(cè):
          a+b+c
          3
          3abc
          3abc
          也恒成立;
          (3)如圖,已知AB是直徑,點(diǎn)P是弧上異于點(diǎn)A和點(diǎn)B的一點(diǎn),PC⊥AB,垂足為C,AC=a,BC=b,由此圖說(shuō)明
          a+b
          2
          ab
          恒成立.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•河池)如圖,已知AB是⊙O的直徑,⊙O過(guò)BC的中點(diǎn)D,且DE⊥AC于點(diǎn)E.
          (1)試判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
          (2)若∠C=30°,CE=6,求⊙O的半徑.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案