日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長線上,CD與⊙O相切于點(diǎn)D,CE⊥AD,交AD的延長線于點(diǎn)E.
          (1)求證:∠BDC=∠A;
          (2)若CE=4,DE=2,求AD的長.

          【答案】
          (1)解:證明:連接OD,

          ∵CD是⊙O切線,

          ∴∠ODC=90°,

          即∠ODB+∠BDC=90°,

          ∵AB為⊙O的直徑,

          ∴∠ADB=90°,

          即∠ODB+∠ADO=90°,

          ∴∠BDC=∠ADO,

          ∵OA=OD,

          ∴∠ADO=∠A,

          ∴∠BDC=∠A;


          (2)解:∵CE⊥AE,

          ∴∠E=∠ADB=90°,

          ∴DB∥EC,

          ∴∠DCE=∠BDC,

          ∵∠BDC=∠A,

          ∴∠A=∠DCE,

          ∵∠E=∠E,

          ∴△AEC∽△CED,

          ,

          ∴EC2=DEAE,

          ∴16=2(2+AD),

          ∴AD=6.


          【解析】(1)連接OD,由CD是⊙O切線,得到∠ODC=90°,根據(jù)AB為⊙O的直徑,得到∠ADB=90°,等量代換得到∠BDC=∠ADO,根據(jù)等腰三角形的性質(zhì)得到∠ADO=∠A,即可得到結(jié)論;(2)根據(jù)垂直的定義得到∠E=∠ADB=90°,根據(jù)平行線的性質(zhì)得到∠DCE=∠BDC,根據(jù)相似三角形的性質(zhì)得到 ,解方程即可得到結(jié)論.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個(gè)交點(diǎn)B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論: ①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;④拋物線與x軸的另一個(gè)交點(diǎn)是(﹣1,0);⑤當(dāng)1<x<4時(shí),有y2<y1 ,
          其中正確的是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)B、E、C、F在一條直線上,AB=DF,AC=DF,BE=FC.
          (1)求證:△ABC≌△DFE;
          (2)連接AF、BD,求證:四邊形ABDF是平行四邊形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,AC=BC=25,AB=30,D是AB上的一點(diǎn)(不與A、B重合),DE⊥BC,垂足是點(diǎn)E,設(shè)BD=x,四邊形ACED的周長為y,則下列圖象能大致反映y與x之間的函數(shù)關(guān)系的是(

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.

          (1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.
          (2)性質(zhì)探究:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系.
          猜想結(jié)論:(要求用文字語言敘述)垂美四邊形兩組對邊的平方和相等
          寫出證明過程(先畫出圖形,寫出已知、求證).
          (3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,BD,CE分別為AC,AB邊上的中線,BD⊥CE,若BD=4,CE=6,則△ABC的面積為( )

          A.12
          B.24
          C.16
          D.32

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】哈佳高鐵建設(shè)工程中,有一段6000米的路段由甲、乙兩個(gè)工程隊(duì)負(fù)責(zé)完成.已知甲工程隊(duì)每天完成的工作量是乙工程隊(duì)每天完成的工作量的2倍,且甲工程隊(duì)單獨(dú)完成此項(xiàng)工程比乙工程隊(duì)單獨(dú)完成此項(xiàng)工程少用30天.
          (1)求甲、乙兩個(gè)工程隊(duì)每天各完成多少米?
          (2)由于施工條件限制,每天只能一個(gè)工程隊(duì)施工,但是工程指揮部仍然要求工期不能超過50天,求甲工程隊(duì)至少施工多少天?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形ABCD中,點(diǎn)E、F分別在邊CD、BC上,且DC=3DE=3a.將矩形沿直線EF折疊,使點(diǎn)C恰好落在AD邊上的點(diǎn)P處,則FP=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為200元、170元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:

          銷售時(shí)段

          銷售數(shù)量

          銷售收入

          A種型號

          B種型號

          第一周

          3臺(tái)

          5臺(tái)

          1800元

          第二周

          4臺(tái)

          10臺(tái)

          3100元

          (進(jìn)價(jià)、售價(jià)均保持不變,利潤=銷售收入﹣進(jìn)貨成本)
          (1)求A、B兩種型號的電風(fēng)扇的銷售單價(jià);
          (2)若超市準(zhǔn)備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺(tái),求A種型號的電風(fēng)扇最多能采購多少臺(tái)?
          (3)在(2)的條件下,超市銷售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤為1400元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案