日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系中,點B坐標(biāo)為(-3,0),點Ay軸正半軸上一點,且AB=5,點Px軸上位于點B右側(cè)的一個動點,設(shè)點P的坐標(biāo)為(m,0

          1)點A的坐標(biāo)為( )

          2)當(dāng)ABP是等腰三角形時,求P點的坐標(biāo);

          3)如圖2,過點PPEAB交線段AB于點E,連接OE.若點A關(guān)于直線OE的對稱點為A',當(dāng)點A'恰好落在直線PE上時,BE=________(直接寫出答案)

          【答案】104;(2)P點的坐標(biāo)為(3,0)、 (2,0)或;(3

          【解析】

          1)在直角AOB中,利用勾股定理求出OA,則A點坐標(biāo)可知;

          2 當(dāng)ABP為等腰三角形時,可分三種情況討論,①若AB=AP時,利用勾股定理求出OP,則P點坐標(biāo)可知;②若BA=BP,P點坐標(biāo)易求;③若PA=PB時,設(shè)Px,0,運用兩點間距離公式列式可求P點坐標(biāo).

          3)過O點作OGAB,由角平分線性質(zhì)定理,結(jié)合PEAB,求得∠GEO=45°,再利用直角三角形的面積公式求得OG的長,則GE的長可知,利用勾股定理又可求出BG,于是BE的長可知.

          1)根據(jù)題意得:

          在直角AOB中,OA=

          A點的坐標(biāo)為(0,4

          故答案為:04

          2)當(dāng)ABP為等腰三角形時,分三種情況討論

          ①若AB=AP=5,OP= , P(3,0)

          ②若BA=BP=5,OP=BP-OB=5-3=2,∴P(20);

          ③若PA=PB時,設(shè)Px,0, ,

          6x=7,

          解得x= ,

          P(,0)

          P點的坐標(biāo)為:(3,0) (2,0)(0)

          3)如圖,過O點作OGAB

          EAA'的垂直平分線上,

          ∴∠AEK=A'EK

          ∴∠GEO=OEH,

          ∵∠AEA'=BEP=90°,

          ∴∠GEO=45°,

          OG=GE,

          SAOB=OG×AB=OA×OB,

          OG=

          GE=OG= ,

          BG=,

          BE=BG+GE=+=.

          故答案為:.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)學(xué)課上,王老師布置如下任務(wù):

          如圖1,直線MN外一點A,過點A作直線MN的平行線.

          (1)小路的作法如下:

          MN上任取一點B,作射線BA;

          B為圓心任意長為半徑畫弧,分別交BAMNC、D兩點(點D位于BA的左側(cè)),再以A為圓心,相同的長度為半徑畫弧EH,交BA于點E(點E位于點A上方);

          ③以E為圓心CD的長為半徑畫弧,交弧EH于點FF點位于BA左側(cè))

          ④作直線AF

          ⑤直線AF即為所求作平行線.

          請你根據(jù)小路同學(xué)的作圖方法,利用直尺和圓規(guī)完成作圖(保留作圖痕跡);并完成以下推理,注明其中蘊含的數(shù)學(xué)依據(jù):

          (2)請你參考小路的作法,利用圖2再設(shè)計一種過點AMN的平行線的尺規(guī)作圖過程(保留作圖痕跡),并說明其中蘊含的數(shù)學(xué)依據(jù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABD,△ACE都是等邊三角形,BEDC相交于點F,連接AF

          1)求證:BEDC;

          2)求證:AF平分∠DFE

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為了節(jié)約水資源,某市準(zhǔn)備按照居民家庭年用水量實行階梯水價,水價分檔遞增,計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%5%.為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:m3),繪制了統(tǒng)計圖,如圖所示.下面有四個推斷:

          ①年用水量不超過180m3的該市居民家庭按第一檔水價交費;

          ②年用水量不超過240m3的該市居民家庭按第三檔水價交費;

          ③該市居民家庭年用水量的中位數(shù)在150~180m3之間;

          ④該市居民家庭年用水量的眾數(shù)約為110m3

          其中合理的是( )

          A. ①③ B. ①④ C. ②③ D. ②④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,∠ABC=45°,CDAB于點D,BEAC于點E,BECD交于點F。

          1)求證:ACD≌△FBD。

          2)若AB=5,AD=1,求BF的長。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在足夠大的空地上有一段長為a米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.

          (1)若a=20,所圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長;

          (2)求矩形菜園ABCD面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】ABC中,∠A是最小角,∠B是最大角,且2B5A,若∠B的最大值m°,最小值n°,則m+n_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,菱形、矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱為接近度.在研究接近度時,應(yīng)保證相似圖形的接近度相等.

          (1)設(shè)菱形相鄰兩個內(nèi)角的度數(shù)分別為,將菱形的接近度定義為,于是,越小,菱形越接近于正方形.

          ①若菱形的一個內(nèi)角為,則該菱形的“接近度”等于 ;

          ②當(dāng)菱形的“接近度”等于 時,菱形是正方形.

          (2)設(shè)矩形相鄰兩條邊長分別是),將矩形的接近度定義為,于是越小,矩形越接近于正方形.

          你認為這種說法是否合理?若不合理,給出矩形的接近度一個合理定義.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在等腰中,的中點,過點,交于點,交于點.,則的長為(

          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊答案