日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,直線l與拋物線相交于A(1,),B(4,0)兩點.

          (1)求出拋物線的解析式;

          (2)在坐標(biāo)軸上是否存在點D,使得△ABD是以線段AB為斜邊的直角三角形?若存在,求出點D的坐標(biāo);若不存在,說明理由;

          (3)點P是線段AB上一動點,(點P不與點A、B重合),過點P作PM∥OA,交第一象限內(nèi)的拋物線于點M,過點M作MC⊥x軸于點C,交AB于點N,若△BCN、△PMN的面積S△BCN、S△PMN滿足S△BCN=2S△PMN,求出的值,并求出此時點M的坐標(biāo).

          【答案】(1);(2)D(1,0)或(0,)或(0,;(3)M(,).

          【解析】

          試題分析:(1)由A、B兩點的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;

          (2)分D在x軸上和y軸上,當(dāng)D在x軸上時,過A作AD⊥x軸,垂足D即為所求;當(dāng)D點在y軸上時,設(shè)出D點坐標(biāo)為(0,d),可分別表示出AD、BD,再利用勾股定理可得到關(guān)于d的方程,可求得d的值,從而可求得滿足條件的D點坐標(biāo);

          (3)過P作PF⊥CM于點F,利用Rt△ADO∽Rt△MFP以及三角函數(shù),可用PF分別表示出MF和NF,從而可表示出MN,設(shè)BC=a,則可用a表示出CN,再利用S△BCN=2S△PMN,可用PF表示出a的值,從而可用PF表示出CN,可求得的值;借助a可表示出M點的坐標(biāo),代入拋物線解析式可求得a的值,從而可求出M點的坐標(biāo).

          試題解析:

          (1)∵A(1,),B(4,0)在拋物線的圖象上,∴,解得,∴拋物線解析式為;

          (2)存在三個點滿足題意,理由如下:

          當(dāng)點D在x軸上時,如圖1,過點A作AD⊥x軸于點D,∵A(1,),∴D坐標(biāo)為(1,0);

          當(dāng)點D在y軸上時,設(shè)D(0,d),則,,且,∵△ABD是以AB為斜邊的直角三角形,∴

          ,即,解得d=,D點坐標(biāo)為(0,)或(0,);

          綜上可知存在滿足條件的D點,其坐標(biāo)為(1,0)或(0,)或(0,;

          (3)如圖2,過P作PF⊥CM于點F,∵PM∥OA,∴Rt△ADO∽Rt△MFP,∴=,∴MF=PF,在Rt△ABD中,BD=3,AD=,∴tan∠ABD=,∴∠ABD=60°,設(shè)BC=a,則CN=a,在Rt△PFN中,∠PNF=∠BNC=30°,∴tan∠PNF=,∴FN=PF,∴MN=MF+FN=PF,∵S△BCN=2S△PMN,∴,∴a=PF,∴NC=a=PF,∴==,∴MN=NC==a,∴MC=MN+NC=()a,∴M點坐標(biāo)為(4﹣a,()a),又M點在拋物線上,代入可得=()a,解得a=或a=0(舍去),OC=4﹣a=,MC=,∴點M的坐標(biāo)為(,).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】點A 為數(shù)軸上表示-2的動點,當(dāng)點A沿數(shù)軸移動4個單位長到B時,點B所表示的實數(shù)是( )
          A.2
          B.6
          C.2或6
          D.不能確定

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】若方程(a-2x+ax-3=0是關(guān)于x的一元二次方程,則a的取值范圍是( ).

          A.a2a2B.a0a2C.a2D.a2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一元二次方程4x-2x-1=0的根的情況為( )

          A.有兩個相等的實數(shù)根B.有兩個不相等的實根數(shù)

          C.只有一個實數(shù)根D.沒有實數(shù)根

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

          (1)在圖中作出△ABC關(guān)于y軸的對稱圖形△A1B1C1;
          (2)在y軸上找出一點P,使得PA+PB的值最小,直接寫出點P的坐標(biāo);
          (3)在平面直角坐標(biāo)系中,找出一點A2 , 使△A2BC與△ABC關(guān)于直線BC對稱,直接寫出點A2的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知盒中裝有僅顏色不同的玻璃球6個,其中紅球2個、黑球3個、白球1個(I)從中任取1個球, 求取得紅球或黑球的概率;
          (II)列出一次任取2個球的所有基本事件;
          (III)從中取3個球,求至少有一個紅球的概率。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】2007年某校初中三個年級在校學(xué)生共796名,學(xué)生的出生月份統(tǒng)計如下,根據(jù)圖中數(shù)據(jù)回答以下問題:

          (1)出生人數(shù)少于60人的月份有哪些?
          (2)至少有兩個人生日在10月5日是不可能事件,還是可能事件,還是必然事件?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知一個角的補角比它的余角的2倍還大30°,則這個角的度數(shù)為________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知∠AOB=30°,點P在∠AOB內(nèi)部且OP=4,P1與P關(guān)于OB對稱,P2與P關(guān)于OA對稱,則P1P2=

          查看答案和解析>>

          同步練習(xí)冊答案