日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,正三棱柱ABCA1B1C1的底面邊長為a,點(diǎn)M在邊 BC上,△AMC1是以點(diǎn)M為直角頂點(diǎn)的等腰直角三角形。
          (Ⅰ)求證點(diǎn)M為邊BC的中點(diǎn);
          (Ⅱ)求點(diǎn)C到平面AMC1的距離;
          (Ⅲ)求二面角M—AC1—C的大小。
          (Ⅰ)點(diǎn)M為BC邊的中點(diǎn)  
          (Ⅱ)∴點(diǎn)C到平面AMC1的距離為底面邊長為
          (Ⅲ)二面角M—AC1—C的大小為45°
          本試題主要考查了立體幾何中,空間點(diǎn)線面的位置關(guān)系的運(yùn)用。第一問中,利用△AMC1為以點(diǎn)M為直角頂點(diǎn)的等腰直角三角形,∴AM⊥C1M且AM=C1M
          又因?yàn)镃C1⊥底面ABC∴C1M在底面內(nèi)射影為CM,AM⊥CM。所以點(diǎn)M為BC邊的中點(diǎn)
          二問中,利用作輔助線,表示,即為所求
          三問中,過點(diǎn)C作CI⊥AC1于I,連HI,∵CH⊥平面C1AM,作出二面角的大小,然后借助于定義法得到結(jié)論。
          (Ⅰ)∵△AMC1為以點(diǎn)M為直角頂點(diǎn)的等腰直角三角形,∴AM⊥C1M且AM=C1M
          ∵三棱柱ABC—A1B1C1,∴CC1⊥底面ABC∴C1M在底面內(nèi)射影為CM,AM⊥CM。
          ∵底面ABC為邊長為a的正三角形,∴點(diǎn)M為BC邊的中點(diǎn)         --------------------4分
          (Ⅱ)過點(diǎn)C作CH⊥MC1,由(Ⅰ)知AM⊥C1M且AM⊥CM,
          ∴AM⊥平面C1CM        ∵CH在平面C1CM內(nèi),∴CH⊥AM,
          ∴CH⊥平面C1AM
          由(Ⅰ)知,AM=CM=,CM=

          ∴點(diǎn)C到平面AMC1的距離為底面邊長為-------------------8分
          (Ⅲ)過點(diǎn)C作CI⊥AC1于I,連HI,∵CH⊥平面C1AM,
          HI⊥AC1,∠CIH是二面角M—AC1—C的平面角
          ∴HI為CI在平面C1AM內(nèi)的射影,
          ∴HI⊥AC1,∠CIH是二面角M—AC1—C的平面角,在直角三角形ACC1中     ,
          ∴∠CIH=45°,        ∴二面角M—AC1—C的大小為45°
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)如圖,已知四棱錐P-ABCD,側(cè)面PAD為邊長等于2的正三角形,底面ABCD為菱形,∠DAB=60°.

          (1)證明:∠PBC=90°;
          (2)若PB=3,求直線AB與平面PBC所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          中,若為直角,則有;類比到三棱錐中,若三個(gè)側(cè)面兩兩垂直,且分別與底面所成的角為,則有     

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          在棱長為1的正方體ABCDA1B1C1D1中,MN分別為A1B1BB1的中點(diǎn),那么直線AMCN所成角的余弦值是(    )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,已知正方體中,E是棱的中點(diǎn),則異面直線與AE所成角的余弦值是________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖在三棱柱與四棱錐的組合體中,已知平面,四邊形是平行四邊形,,,
          (1)設(shè)是線段的中點(diǎn),求證:∥平面;
          (2)求直線與平面所成的角。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          如右圖,在正方體-中,的中點(diǎn),則所在直線所成角的余弦值等于    (  )           (   )
          A.B.
          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          三棱錐S—ABC的三條側(cè)棱兩兩互相垂直,且SA=1,BS=,SC=,則底面內(nèi)的角∠ABC等于(    ) 
          A.30°B.45°C.60°D.120°

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          直三棱柱 (三條側(cè)棱和底面均垂直的三棱柱叫做直三棱柱)中,若,,則異面直線所成的角等于       (    )
          A.30°B.45°C.60°D.90°

          查看答案和解析>>

          同步練習(xí)冊(cè)答案