日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,BC邊上存在點(diǎn)Q,使得PQ⊥QD,則實(shí)數(shù)a的取值范圍是________.
          [2,+∞)
          如圖,連接AQ,∵PA⊥平面AC,

          ∴PA⊥QD,又PQ⊥QD,PQ∩PA=P,
          ∴QD⊥平面PQA,于是QD⊥AQ,
          ∴在線段BC上存在一點(diǎn)Q,使得QD⊥AQ,
          等價于以AD為直徑的圓與線段BC有交點(diǎn),
          ≥1,a≥2.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分12分)
          在如圖所示的多面體中,四邊形都為矩形。

          (Ⅰ)若,證明:直線平面;
          (Ⅱ)設(shè),分別是線段,的中點(diǎn),在線段上是否存在一點(diǎn),使直線平面?請證明你的結(jié)論。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (2011•浙江)如圖,在三棱錐P﹣ABC中,AB=AC,D為BC的中點(diǎn),PO⊥平面ABC,垂足O落在線段AD上,已知BC=8,PO=4,AO=3,OD=2
          (1)證明:AP⊥BC;
          (2)在線段AP上是否存在點(diǎn)M,使得二面角A﹣MC﹣β為直二面角?若存在,求出AM的長;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (2013·遼寧高考)如圖,AB是圓O的直徑,PA垂直圓O所在的平面,C是圓O上的點(diǎn).

          (1)求證:平面PAC⊥平面PBC.
          (2)設(shè)Q為PA的中點(diǎn),G為△AOC的重心,求證:QG∥平面PBC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD是平行四邊形,且AC⊥CD,PA=AD,M,Q分別是PD,BC的中點(diǎn).
          (1)求證:MQ∥平面PAB;
          (2)若AN⊥PC,垂足為N,求證:MN⊥PD.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在四棱錐中,,為正三角形,且平面平面

          (1)證明:;
          (2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在四棱錐中,底面為正方形,平面,已知,為線段的中點(diǎn).
          (1)求證:平面
          (2)求二面角的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          [2012·遼寧高考]已知正三棱錐P-ABC,點(diǎn)P,A,B,C都在半徑為的球面上,若PA,PB,PC兩兩相互垂直,則球心到截面ABC的距離為________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,在四棱錐中,底面.底面為梯形,,,.若點(diǎn)是線段上的動點(diǎn),則滿足的點(diǎn)的個數(shù)是 

          查看答案和解析>>

          同步練習(xí)冊答案