已知函數(shù)f(x)=ln x+2x,g(x)=a(x2+x).
(1)若a=,求F(x)=f(x)-g(x)的單調區(qū)間;
(2)若f(x)≤g(x)恒成立,求實數(shù)a的取值范圍.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(
R),
為其導函數(shù),且
時
有極小值
.
(1)求的單調遞減區(qū)間;
(2)若,
,當
時,對于任意x,
和
的值至少有一個是正數(shù),求實數(shù)m的取值范圍;
(3)若不等式(
為正整數(shù))對任意正實數(shù)
恒成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)滿足如下條件:當
時,
,且對任
意,都有
.
(1)求函數(shù)的圖象在點
處的切線方程;
(2)求當,
時,函數(shù)
的解析式;
(3)是否存在,
、
、
、
、
,使得等式
成立?若存在就求出
(
、
、
、
、
),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù).
(1)若在
時有極值,求實數(shù)
的值和
的極大值;
(2)若在定義域上是增函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),函數(shù)
的導函數(shù)
,且
,其中
為自然對數(shù)的底數(shù).
(1)求的極值;
(2)若,使得不等式
成立,試求實數(shù)
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若,求曲線
在點
處的切線方程;
(2)求函數(shù)的單調區(qū)間;
(3)設函數(shù).若至少存在一個
,使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點.已知A,b是實數(shù),1和-1是函數(shù)f(x)=x3+Ax2+b x的兩個極值點.
(1)求A和b的值;
(2)設函數(shù)g(x)的導函數(shù)g′(x)=f(x)+2,求g(x)的極值點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com