日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)
          (1)若,求曲線在點處的切線方程;
          (2)求函數(shù)的單調(diào)區(qū)間;
          (3)設函數(shù).若至少存在一個,使得成立,求實數(shù)的取值范圍.

          (1),(2)當時,上單調(diào)遞減,若,單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.若,在上單調(diào)遞增.(3).

          解析試題分析:(1)利用導數(shù)幾何意義求切線斜率,根據(jù)點斜式寫切線過程. 函數(shù)的定義域為.當時,函數(shù),.所以曲線在點處的切線方程為,即.(2)利用導數(shù)研究函數(shù)單調(diào)性,關鍵明確導函數(shù)零點與定義域的關系,正確判斷導數(shù)符號. 當時,,,當時,若,由,即,得;由,即,得.若,,.(3)存在性問題,利用變量分離轉(zhuǎn)化為求函數(shù)最值. 因為,等價于.令,等價于“當 時,”. 因為當時,,所以,因此.
          函數(shù)的定義域為,.   1分
          (1)當時,函數(shù),,
          所以曲線在點處的切線方程為,
          .         4分
          (2)函數(shù)的定義域為
          1.當時,上恒成立,
          上恒成立,此時上單調(diào)遞減.     5分
          2.當時,
          (。┤
          ,即,得;      6分
          ,即,得.         7分
          所以函數(shù)的單調(diào)遞增區(qū)間為,
          單調(diào)遞減區(qū)間為

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
          (1)當a=0時,求曲線y=f(x)在點(1,f(1))處的切線的斜率;
          (2)當a≠時,求函數(shù)y=f(x)的單調(diào)區(qū)間與極值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)f(x)=ln x+2x,g(x)=a(x2+x).
          (1)若a=,求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
          (2)若f(x)≤g(x)恒成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          (14分)(2011•廣東)設a>0,討論函數(shù)f(x)=lnx+a(1﹣a)x2﹣2(1﹣a)x的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù),.
          (1)當時,證明:;
          (2)若,求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù) ().
          (1)若,求函數(shù)的極值;
          (2)設
          ① 當時,對任意,都有成立,求的最大值;
          ② 設的導函數(shù).若存在,使成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù),其中.
          (1)討論的單調(diào)性;
          (2) 若不等式恒成立,求實數(shù)取值范圍;
          (3)若方程存在兩個異號實根,,求證:

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù).
          (1)當a=l時,求的單調(diào)區(qū)間;
          (2)若函數(shù)上是減函數(shù),求實數(shù)a的取值范圍;
          (3)令,是否存在實數(shù)a,當(e是自然對數(shù)的底數(shù))時,函數(shù)g(x)最小值是3,若存在,求出a的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),曲線在點處的切線與軸平行.
          (Ⅰ)求的值;
          (Ⅱ)求的單調(diào)區(qū)間;
          (Ⅲ)設,其中的導函數(shù).證明:對任意

          查看答案和解析>>

          同步練習冊答案