日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          (本小題滿分14分)已知動圓過定點,且和定直線相切.(Ⅰ)求動圓圓心的軌跡的方程;(Ⅱ)已知點,過點作直線與曲線交于兩點,若為實數),證明:
          (Ⅰ)   (Ⅱ)  見解析
          (Ⅰ)解:由拋物線定義知
          點的軌跡是以為焦點,直線為準線的拋物線,………3分
          所以點的軌跡的方程是.……………………5分
          (Ⅱ)證明:設直線AB的方程為,代入拋物線方程得:
          兩點的坐標分別是,,則.………………7分
          由點P滿足,得
          又點Q的坐標是,從而
          ,……………………9

          =
          ===0.
          所以,.……………………14分
          練習冊系列答案
          相關習題

          科目:高中數學 來源:不詳 題型:解答題

          (12分)已知焦點在軸上,離心率為的橢圓的一個頂點是拋物線的焦點,過橢圓右焦點的直線交橢圓于兩點,交軸于點,且,(1)求橢圓方程;(2)證明:為定值

          查看答案和解析>>

          科目:高中數學 來源:不詳 題型:解答題

          (本小題滿分12分)過點M(1,1)作直線與拋物線交于A、B兩點,該拋物線在A、B兩點處的兩條切線交于點P。  (I)求點P的軌跡方程;  (II)求△ABP的面積的最小值。

          查看答案和解析>>

          科目:高中數學 來源:不詳 題型:解答題

          設橢圓的中心是坐標原點,焦點在軸上,離心率,已知點到這個橢圓上的點的最遠距離是4,求這個橢圓的方程.

          查看答案和解析>>

          科目:高中數學 來源:不詳 題型:填空題

          若動圓與圓(x-2)2+y2=1外切,又與直線x+1=0相切,則動圓圓心的軌跡方程為__________.

          查看答案和解析>>

          科目:高中數學 來源:不詳 題型:解答題

          (本小題滿分13分)若橢圓的離心率等于,拋物線 的焦點在橢圓的頂點上。(Ⅰ)求拋物線的方程;
          (Ⅱ)求的直線與拋物線兩點,又過、作拋物線的切線、,當時,求直線的方程;

          查看答案和解析>>

          科目:高中數學 來源:不詳 題型:解答題

          設橢圓與雙曲線有共同的焦點F(-4,0)、F(4,0),并且橢圓和長軸長是雙曲線實軸長的2倍,試求橢圓與雙曲線交點的軌跡方程。

          查看答案和解析>>

          科目:高中數學 來源:不詳 題型:解答題

          已知拋物線的頂點在原點,對稱軸是x軸,拋物線上的點M(-3,m)到焦點的距離等于5,求拋物線的方程和M的值.

          查看答案和解析>>

          科目:高中數學 來源:不詳 題型:解答題

          如圖,已知梯形的一底邊在平面內,另一底邊在平面外,對角線交點到平面的距離為,若,求到平面的距離.

          查看答案和解析>>

          同步練習冊答案